Abstract

The Stokes shift spectroscopy (S3) offers a simpler and better way to recognize spectral fingerprints of fluorophores in complex mixtures. The efficiency of S3 for cancer detection in human tissue was investigated systematically. The alterations of Stokes shift spectra (S3) between cancerous and normal tissues are due to the changes of key fluorophores, e.g., tryptophan and collagen, and can be highlighted using optimized wavelength shift interval. To our knowledge, this is the first time to explicitly disclose how and why S3 is superior in comparison with other conventional spectroscopic techniques.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
    [CrossRef]
  2. R. R. Alfano and Y. Yang, IEEE J. Quantum Electron 9, 148 (2003).
    [CrossRef]
  3. Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
    [CrossRef]
  4. H. J. G. Bloom and W. W. Richardson, Br. J. Cancer 11, 359 (1957).
    [CrossRef]
  5. G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
    [CrossRef]

2010 (1)

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

2003 (1)

R. R. Alfano and Y. Yang, IEEE J. Quantum Electron 9, 148 (2003).
[CrossRef]

1999 (1)

G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
[CrossRef]

1984 (1)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

1957 (1)

H. J. G. Bloom and W. W. Richardson, Br. J. Cancer 11, 359 (1957).
[CrossRef]

Alfano, M.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Alfano, R. R.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

R. R. Alfano and Y. Yang, IEEE J. Quantum Electron 9, 148 (2003).
[CrossRef]

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Bloom, H. J. G.

H. J. G. Bloom and W. W. Richardson, Br. J. Cancer 11, 359 (1957).
[CrossRef]

Cordero, J.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Dent, D. M.

G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
[CrossRef]

Fenhalls, G.

G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
[CrossRef]

Longo, F.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Parker, M. I.

G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
[CrossRef]

Pu, Y.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Richardson, W. W.

H. J. G. Bloom and W. W. Richardson, Br. J. Cancer 11, 359 (1957).
[CrossRef]

Tang, G. C.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Tata, D.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Tomashefsky, P.

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

Wang, W. B.

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Yang, Y.

R. R. Alfano and Y. Yang, IEEE J. Quantum Electron 9, 148 (2003).
[CrossRef]

Br. J. Cancer (2)

H. J. G. Bloom and W. W. Richardson, Br. J. Cancer 11, 359 (1957).
[CrossRef]

G. Fenhalls, D. M. Dent, and M. I. Parker, Br. J. Cancer 81, 1142 (1999).
[CrossRef]

IEEE J. Quantum Electron (2)

R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, and M. Alfano, IEEE J. Quantum Electron 20, 1507 (1984).
[CrossRef]

R. R. Alfano and Y. Yang, IEEE J. Quantum Electron 9, 148 (2003).
[CrossRef]

J. Biomed. Opt. (1)

Y. Pu, W. B. Wang, G. C. Tang, and R. R. Alfano, J. Biomed. Opt. 15, 047008 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Average Stokes Shift spectra of cancerous (solid) and normal (dash) breast tissues acquired by the selective Δλc=40nm.

Fig. 2.
Fig. 2.

(a) S3 of mixed solution of tryptophan, NADH, and flavin obtained by Δλc=40nm (dash) and aqueous suspension collagen; (b) The relative content of tryptophan versus collagen in cancerous and normal breast tissues by analyzing their S3 obtained with the selective Δλc=40nm. The separating lines were calculated using the LDA method.

Fig. 3.
Fig. 3.

S3 of mixed solution of tryptophan, NADH, and flavin obtained by (a) Δλc=20nm (solid), 60 nm (dash), and 80 nm (dot); and (b) 100 nm (solid), 120 nm (dash), and 140 nm (dot).

Fig. 4.
Fig. 4.

(a) FWHM and (b) S3 peak intensities of tryptophan (square–solid), NADH (circle–dash) and flavin (hexagon–dot) in the mixed solution changed as a function of Δλc.

Tables (1)

Tables Icon

Table 1. S3-Related Parameters of Key Fluorophores

Metrics