Abstract

We present a technique called coupled-cavity ring-down spectroscopy (CC-RDS) for controlling the finesse of an optical resonator. Applications include extending the sensitivity and dynamic range of a cavity-enhanced spectrometer as well as widening the useful spectral region of high-reflectivity mirrors. CC-RDS uses controlled feedback of the probe laser beam to a ring-down cavity, which leads to interference between the internally circulating light and that which is fed back through a cavity mirror port. Using a 74 cm long ring-down cavity and a feedback cavity with a finesse of 16, we demonstrate that this effect increases the decay time constant from 210 μs to 280 μs, corresponding to an increase of finesse from 2.7×105 to 3.6×105. Finally, we show that with the addition of a second feedback cavity, we observe ring-down times as long as 0.5ms, which is equivalent to (1R)4.9×106, where R is the effective mirror reflectivity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Z. Anderson, J. C. Frisch, and C. S. Masser, Appl. Opt. 23, 1238 (1984).
    [CrossRef]
  2. J. Ye, L.-S. Ma, and J. L. Hall, J. Opt. Soc. Am. B 15, 6 (1998).
    [CrossRef]
  3. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [CrossRef]
  4. H. Huang and K. K. Lehmann, Appl. Opt. 49, 1378 (2010).
    [CrossRef]
  5. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
    [CrossRef]
  6. R. W. Fox and L. Hollberg, Opt. Lett. 27, 1833 (2002).
    [CrossRef]
  7. D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
    [CrossRef]
  8. J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
    [CrossRef]
  9. D. W. Allan, Proc. IEEE 54, 221 (1966).
    [CrossRef]
  10. E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008).
    [CrossRef]
  11. J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
    [CrossRef]

2012 (1)

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

2010 (1)

2008 (1)

E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008).
[CrossRef]

2005 (1)

J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
[CrossRef]

2004 (1)

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

2002 (1)

1998 (1)

1993 (1)

D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
[CrossRef]

1988 (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

1984 (1)

1966 (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Allan, D. W.

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Anderson, D. Z.

Ciurylo, R.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Cormier, J. G.

J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
[CrossRef]

Cygan, A.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Domyslawska, J.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Drummond, J. R.

J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
[CrossRef]

Fox, R. W.

Frisch, J. C.

Gianfrani, L.

E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008).
[CrossRef]

Hall, J. L.

Hodges, J. T.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
[CrossRef]

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

Hollberg, L.

Huang, H.

Kerstel, E.

E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008).
[CrossRef]

Layer, H. P.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

Lehmann, K. K.

H. Huang and K. K. Lehmann, Appl. Opt. 49, 1378 (2010).
[CrossRef]

D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
[CrossRef]

Lisak, D.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Ma, L.-S.

Masser, C. S.

Miller, W. M.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Romanini, D.

D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
[CrossRef]

Scace, G. E.

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

Trawínski, R. S.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Wójtewicz, S.

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Ye, J.

Appl. Opt. (2)

Appl. Phys. B (1)

E. Kerstel and L. Gianfrani, Appl. Phys. B 92, 439 (2008).
[CrossRef]

J. Chem. Phys. (2)

J. G. Cormier, J. T. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
[CrossRef]

D. Romanini and K. K. Lehmann, J. Chem. Phys. 99, 6287 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phy. Rev. A (1)

A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawínski, and R. Ciuryło, Phy. Rev. A 85, 022508 (2012).
[CrossRef]

Proc. IEEE (1)

D. W. Allan, Proc. IEEE 54, 221 (1966).
[CrossRef]

Rev. Sci. Instrum. (2)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

J. T. Hodges, H. P. Layer, W. M. Miller, and G. E. Scace, Rev. Sci. Instrum. 75, 849 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic principle of the coupled-cavity ring-down spectrometer and its corresponding equivalent optical system. Once the probe-beam intensity has been interrupted, the light leaks out of the RDC at a rate dictated by its round-trip losses (isolated system). In the coupled-cavity case, the reflected field from mirror M1, given by Arefl, arises from the direct reflection of the circulating field within the RDC, r1Ainc, plus the portion of the circulating field in the FBC that retroreflects from the FBM and couples back into the RDC through its input mirror, i2t12SFBC. This coupled-cavity mechanism alters the effective reflectivity of mirror M1 in the equivalent optical system, thus altering the finesse of the RDC.

Fig. 2.
Fig. 2.

Theoretical dependence of the effective time constant τeff on changes in the input (blue/lower) and output (red/upper) FBC lengths, ΔLFBM. While the latter case corresponds to an input ΔLFBM that maximizes R1,eff, both cases consider lossless FBC systems. The line labeled “Isolated RDC” is the nominal observed decay time constant of the isolated system. Parameters correspond to those of our experimental configuration and are given in the text.

Fig. 3.
Fig. 3.

(a) Comparison of three sets of measurements with theoretical predictions given by Eq. (1). The line labeled “Isolated RDC” is the nominal observed decay time constant of the isolated system, and the curve labeled “Theory” is based on Eq. 1 with experimental parameters given in the text; (b) Measured empty cavity decay time constants together with the corresponding effective finesse. In (1) the RDC is isolated, while for cases (2) and (3) one FBC is used to change the effective finesse of the RDC through alteration of R1,eff. In the latter recycling system the finesse for the input FBC for the s- and p- polarization states of the probe beam are 7 and 18, respectively, explaining the differences in modulation depth when the FBM is dithered. Flat data regions correspond to an actively length-stabilized FBC. In (4) a second output FBC was introduced, while the input FBC length was both adjusted and maintained to maximize R1,eff.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R1,eff=|r1,eff|2=|r1C00rFBMrDBS2textra2t12e2iφFBC1r1rFBMrDBS2textra2e2iφFBC|2,

Metrics