Abstract

A method to decrease the polarization-fluctuation induced drift in a resonator fiber optic gyro (R-FOG) is demonstrated by inserting two in-line polarizers in a polarization-maintaining fiber resonator with twin 90° polarization-axis rotated splices. The in-line polarizers attenuate the unwanted resonance by introducing high loss for the unwanted eigenstates of polarization in the resonator. Compared to the resonator without in-line polarizers, the polarization-fluctuation induced drift is reduced by 6×103 times. The desired resonance in the resonator can keep excellent stability in a wide temperature range; thus the temperature-dependent polarization-fluctuation drift in the R-FOG is sufficiently suppressed. A typical bias stability of 4.7°/h over 6500 s with an integration time of 10 s has been carried out. To the best of our knowledge, the long-term bias stability and high temperature stability are the best ever demonstrated in an R-FOG.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).
  2. G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.
  3. K. Iwatsuki, K. Hotate, and M. Higashiguchi, Appl. Opt. 25, 2606 (1986).
    [CrossRef]
  4. G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).
  5. L. K. Strandjord and G. A. Sanders, Proc. SPIE 1585, 163 (1991).
    [CrossRef]
  6. X. Wang, Z. He, and K. Hotate, Opt. Express 18, 1677 (2010).
    [CrossRef]
  7. L. K. Strandjord and G. A. Sanders, Proc. SPIE 1795, 94 (1991).
    [CrossRef]
  8. R. P. Dahlgren and R. E. Sutherland, Proc. SPIE 1585, 128 (1991).
    [CrossRef]
  9. X. Zhang, H. Ma, Z. Jin, and C. Ding, Appl. Opt. 45, 7961 (2006).
    [CrossRef]
  10. H. Ma, Z. He, and K. Hotate, J. Lightwave Technol. 29, 85 (2011).
    [CrossRef]
  11. Z. Jin, X. Yu, and H. Ma, Appl. Opt. 51, 2856 (2012).
    [CrossRef]
  12. F. Zarinetchi, “Studies in Optical Resonator Gyroscope,” Ph.D. dissertation (Massachusetts Institute of Technology, 1992).

2012 (1)

2011 (1)

2010 (1)

2006 (1)

1991 (3)

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1585, 163 (1991).
[CrossRef]

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1795, 94 (1991).
[CrossRef]

R. P. Dahlgren and R. E. Sutherland, Proc. SPIE 1585, 128 (1991).
[CrossRef]

1989 (1)

G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).

1986 (1)

Armenise, M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Ciminelli, C.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Dahlgren, R. P.

R. P. Dahlgren and R. E. Sutherland, Proc. SPIE 1585, 128 (1991).
[CrossRef]

Dell’Olio, F.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Demma, N.

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Ding, C.

He, Z.

Higashiguchi, M.

Hotate, K.

Iwatsuki, K.

Jin, Z.

Ma, H.

Passaro, V.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

Rouse, G. F.

G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1585, 163 (1991).
[CrossRef]

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1795, 94 (1991).
[CrossRef]

G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Smith, R. B.

G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1585, 163 (1991).
[CrossRef]

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1795, 94 (1991).
[CrossRef]

Sutherland, R. E.

R. P. Dahlgren and R. E. Sutherland, Proc. SPIE 1585, 128 (1991).
[CrossRef]

Wang, X.

Yu, X.

Zarinetchi, F.

F. Zarinetchi, “Studies in Optical Resonator Gyroscope,” Ph.D. dissertation (Massachusetts Institute of Technology, 1992).

Zhang, X.

Appl. Opt. (3)

J. Lightwave Technol. (1)

Opt. Express (1)

Proc. SPIE (4)

G. A. Sanders, R. B. Smith, and G. F. Rouse, Proc. SPIE 1169, 373 (1989).

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1585, 163 (1991).
[CrossRef]

L. K. Strandjord and G. A. Sanders, Proc. SPIE 1795, 94 (1991).
[CrossRef]

R. P. Dahlgren and R. E. Sutherland, Proc. SPIE 1585, 128 (1991).
[CrossRef]

Other (3)

F. Zarinetchi, “Studies in Optical Resonator Gyroscope,” Ph.D. dissertation (Massachusetts Institute of Technology, 1992).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer Verlag, 2010).

G. A. Sanders, N. Demma, G. F. Rouse, and R. B. Smith, in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Basic configuration of an R-FOG.

Fig. 2.
Fig. 2.

Simulation of the resonant curves. Resonator without in-line polarizer for (b) and (d); resonator with in-line polarizers for (a) and (c). Phase separation between the two ESOPs is π for (a) and (b), and 0 for (c) and (d).

Fig. 3.
Fig. 3.

Resonant curves of the resonator with in-line polarizers when the phase separation between the two ESOPs is 0.

Fig. 4.
Fig. 4.

Measured resonant curves.

Fig. 5.
Fig. 5.

Rotation measurement results of the digital R-FOG.

Fig. 6.
Fig. 6.

Open-loop output of the rotation rate (turntable stationary). (a) R-FOG rate output versus running time for a 2 h drift run. (b) Rate uncertainty versus integration time.

Metrics