Abstract

We propose an optical switch based on the electrowetting effect. A transparent oil and a dye-doped water fill a cell. The two liquids are immiscible and form a curved interface. A transparent pillar-shaped platform with a round dome is fixed on the substrate. The dome of the platform is submerged in the water. As a result, light is highly absorbed by the covered water. When the shape of the water is changed, the oil can touch the dome of the platform due to the electrowetting effect. Then the transparent platform and the oil form a channel which can pass through the incident light. Our results show that the system can obtain a high optical attenuation (928:1) and reasonable response time (47ms). The diameter of the aperture can be tuned from 0 to 3.0mm. The proposed optical switch has potential application in light shutters, variable optical attenuators, and adaptive irises.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  2. A. H. Robert and B. J. Feenstra, Nature 25, 383 (2003).
  3. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  4. F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
    [CrossRef]
  5. C. C. Cheng and J. A. Yeh, Opt. Express 15, 7140 (2007).
    [CrossRef]
  6. Y. J. Lin, K. M. Chen, and S. T. Wu, Opt. Express 17, 8651 (2009).
    [CrossRef]
  7. S. A. Reza and N. A. Riza, Opt. Commun. 282, 1298 (2009).
    [CrossRef]
  8. C. G. Tsai and J. A. Yeh, Opt. Lett. 35, 2484 (2010).
    [CrossRef]
  9. Y. H. Lin, J. K. Li, T. Y. Chu, and H. K. Hsu, Opt. Express 18, 10104 (2010).
    [CrossRef]
  10. H. Ren and S. T. Wu, Opt. Lett. 35, 3826 (2010).
    [CrossRef]
  11. H. Ren, S. Xu, D. Ren, and S. T. Wu, Opt. Express 19, 1985 (2011).
    [CrossRef]
  12. H. Ren, S. Xu, and S. T. Wu, Opt. Lett. 37, 1421 (2012).
    [CrossRef]
  13. C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, Opt. Express 19, 15525 (2011).
    [CrossRef]
  14. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
    [CrossRef]

2012 (1)

2011 (2)

2010 (3)

2009 (2)

S. A. Reza and N. A. Riza, Opt. Commun. 282, 1298 (2009).
[CrossRef]

Y. J. Lin, K. M. Chen, and S. T. Wu, Opt. Express 17, 8651 (2009).
[CrossRef]

2008 (1)

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

2007 (1)

2005 (1)

F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
[CrossRef]

2004 (1)

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

2003 (1)

A. H. Robert and B. J. Feenstra, Nature 25, 383 (2003).

2000 (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Baret, J. C.

F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Chen, K. M.

Cheng, C. C.

Chu, T. Y.

Feenstra, B. J.

A. H. Robert and B. J. Feenstra, Nature 25, 383 (2003).

Ge, Z.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Hsu, H. K.

Jiao, M.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Li, J. K.

Lin, Y. H.

Lin, Y. J.

Mugele, F.

C. U. Murade, J. M. Oh, D. van den Ende, and F. Mugele, Opt. Express 19, 15525 (2011).
[CrossRef]

F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
[CrossRef]

Murade, C. U.

Oh, J. M.

Peseux, J.

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Phys, J.

F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
[CrossRef]

Ren, D.

Ren, H.

Reza, S. A.

S. A. Reza and N. A. Riza, Opt. Commun. 282, 1298 (2009).
[CrossRef]

Riza, N. A.

S. A. Reza and N. A. Riza, Opt. Commun. 282, 1298 (2009).
[CrossRef]

Robert, A. H.

A. H. Robert and B. J. Feenstra, Nature 25, 383 (2003).

Song, Q.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Tsai, C. G.

van den Ende, D.

Wu, S. T.

Xu, S.

Yeh, J. A.

Appl. Phys. Lett. (2)

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, Appl. Phys. Lett. 92, 061102 (2008).
[CrossRef]

Condens. Matter (1)

F. Mugele, J. C. Baret, and J. Phys, Condens. Matter 17, R705 (2005).
[CrossRef]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

Nature (1)

A. H. Robert and B. J. Feenstra, Nature 25, 383 (2003).

Opt. Commun. (1)

S. A. Reza and N. A. Riza, Opt. Commun. 282, 1298 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Supplementary Material (2)

» Media 1: MOV (3852 KB)     
» Media 2: MOV (2556 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic side view of the proposed optical switch. (a) Switch-off state; (b) Switch-on state.

Fig. 2.
Fig. 2.

Side view of the optical switch in the transition process. (a) Side view of switch-off state. (b) Side view of switch-on state. (Media 1).

Fig. 3.
Fig. 3.

Performance of the optical switch illuminated by laser beam. (a) U=0V; (b) U=45V; (c) U=50V; (d) U=60V; (e) U=70V; (f) U=80V (Media 2).

Fig. 4.
Fig. 4.

Normalized light intensity versus the voltage applied.

Fig. 5.
Fig. 5.

Measured time-dependent transmitted light intensity at U=80V.

Tables (1)

Tables Icon

Table 1. Response Time versus Distance from Cap to Interface (Applied Voltage 80 V DC)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cosθ=γ1γ2γ12+ε2γ12dU2,

Metrics