Abstract

We designed, fabricated, and characterized thermal performances of Fabry-Pérot quantum-dot lasers with both metal-coated and conventional dielectric waveguides. With proper design, metals, such as Ag, Au, Cu, and Al can function as a low loss waveguide wall as well as an efficient heat remover. Metal-cavity waveguide lasers showed excellent threshold and characteristic temperature working above 120 °C, while dielectric waveguide lasers ceased operation near 80 °C under the same conditions. The thermal analysis of these lasers showed that metal-cavity lasers have approximately 1.5 times higher thermal conductivity compared with those of the dielectric lasers. We believe that the metal-coating of waveguides and the proper selection of metal efficiently remove the heat from the active region and enable stable lasing operation at high temperature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription