Abstract

We demonstrate a simplified arrangement for spatiotemporal ultrashort pulse characterization called Hartmann–Shack assisted, multidimensional, shaper-based technique for electric-field reconstruction. It employs an acousto-optic pulse shaper in combination with a second-order nonlinear crystal and a Hartmann–Shack wavefront sensor. The shaper is used as a tunable bandpass filter, and the wavefronts and intensities of quasimonochromatic spectral slices of the pulse are obtained using the Hartmann–Shack wavefront sensor. The wavefronts and intensities of the spectral slices are related to one another using shaper-assisted frequency-resolved optical gating measurements, performed at particular points in the beam. This enables a three-dimensional reconstruction of the amplitude and phase of the pulse. We present some example pulse measurements and discuss the operating parameters of the device.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  2. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  3. A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, and U. Keller, Opt. Express 15, 5394 (2007).
    [CrossRef]
  4. C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
    [CrossRef]
  5. P. Gabolde and R. Trebino, Opt. Express 12, 4423 (2004).
    [CrossRef]
  6. E. Rubino, D. Faccio, L. Tartara, P. K. Bates, O. Chalus, M. Clerici, F. Bonaretti, J. Biegert, and P. Di Trapani, Opt. Lett. 34, 3854 (2009).
    [CrossRef]
  7. P. Tournois, Opt. Commun. 140, 245 (1997).
    [CrossRef]
  8. N. Forget, V. Crozatier, and T. Oksenhendler, J. Opt. Soc. Am. B 27, 742 (2010).
    [CrossRef]
  9. B. Platt and R. V. Shack, Opt. Sci. Cent. Newsl. 5, 15 (1971).
  10. J. M. Bueno, B. Vohnsen, L. Roso, and P. Artal, Appl. Opt. 48, 770 (2009).
    [CrossRef]
  11. S. L. Cousin, N. Forget, A. Grün, P. K. Bates, D. R. Austin, and J. Biegert, Opt. Lett. 36, 2803 (2011).
    [CrossRef]
  12. D. J. McCabe, D. R. Austin, A. Tajalli, S. Weber, I. A. Walmsley, and B. Chatel, J. Opt. Soc. Am. B 28, 58 (2011).
    [CrossRef]
  13. N. Krebs, R. A. Probst, and E. Riedle, Opt. Express 18, 6164 (2010).
    [CrossRef]
  14. J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
    [CrossRef]
  15. O. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [CrossRef]

2011 (2)

2010 (2)

2009 (2)

2007 (1)

2004 (1)

2002 (1)

C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
[CrossRef]

1998 (1)

1997 (1)

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

1996 (1)

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

1993 (1)

D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

1984 (1)

1971 (1)

B. Platt and R. V. Shack, Opt. Sci. Cent. Newsl. 5, 15 (1971).

Artal, P.

Austin, D. R.

Bates, P. K.

Biegert, J.

Bonaretti, F.

Bueno, J. M.

Chalus, O.

Chatel, B.

Clerici, M.

Couairon, A.

Cousin, S. L.

Crozatier, V.

Di Trapani, P.

Dorrer, C.

C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
[CrossRef]

Faccio, D.

Forget, N.

Fork, R. L.

Franco, M.

Gabolde, P.

Gallmann, L.

Gordon, J. P.

Grün, A.

Guandalini, A.

Hebling, J.

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

Holler, M.

Iaconis, C.

Kane, D.

D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Keller, U.

Kosik, E.

C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
[CrossRef]

Krebs, N.

Martinez, O. E.

McCabe, D. J.

Mysyrowicz, A.

Oksenhendler, T.

Platt, B.

B. Platt and R. V. Shack, Opt. Sci. Cent. Newsl. 5, 15 (1971).

Probst, R. A.

Riedle, E.

Roso, L.

Rubino, E.

Schapper, F.

Shack, R. V.

B. Platt and R. V. Shack, Opt. Sci. Cent. Newsl. 5, 15 (1971).

Tajalli, A.

Tartara, L.

Tournois, P.

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

Trebino, R.

P. Gabolde and R. Trebino, Opt. Express 12, 4423 (2004).
[CrossRef]

D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Vohnsen, B.

Walmsley, I.

C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
[CrossRef]

Walmsley, I. A.

Weber, S.

Zaïr, A.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Dorrer, E. Kosik, and I. Walmsley, Appl. Phys. B 74, s209 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

P. Tournois, Opt. Commun. 140, 245 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. Hebling, Opt. Quantum Electron. 28, 1759 (1996).
[CrossRef]

Opt. Sci. Cent. Newsl. (1)

B. Platt and R. V. Shack, Opt. Sci. Cent. Newsl. 5, 15 (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic setup of the HAMSTER spatiotemporal measurement device; the acronyms are described in the text. Planes conjugate to the measurement plane M are indicated by dashed lines.

Fig. 2.
Fig. 2.

(a) Spatiotemporal intensity of the prism-dispersed pulse, represented as a surface of 50% peak intensity, with projections along the coordinate axes. (b) Measured quadratic spectral phase versus position along the axis of angular dispersion x (red, left axis) with linear fit (red dashed). Normalized intensity projected onto the x axis (blue, right axis).

Fig. 3.
Fig. 3.

(a) Spatiospectral intensity profile of pulse measured 371 mm after the prism. The horizontal blue lines indicate the points temporally characterized by the bFROG. (b)–(d) Spectral intensity (blue, left axis) and phase (red, right axis) at the three temporally characterized points. Faint, thick lines show the final reconstructed profiles, while thin, dark lines show what is directly retrieved by the bFROG reconstruction.

Metrics