Abstract

We present and characterize a two-dimensional (2D) imaging spectrometer based on a virtually imaged phased array (VIPA) disperser for rapid, high-resolution molecular detection using mid-infrared (MIR) frequency combs at 3.1 and 3.8 μm. We demonstrate detection of CH4 at 3.1 μm with >3750 resolution elements spanning >80nm with 600MHz resolution in a <10μs acquisition time. In addition to broadband detection, we also demonstrate rapid, time-resolved single-image detection by capturing dynamic concentration changes of CH4 at a rate of 375 frames per second. Changes in absorption above the noise floor of 5×104 are readily detected on the millisecond time scale, leading to important future applications such as real-time monitoring of trace gas concentrations and detection of reactive intermediates.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [CrossRef]
  2. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
    [CrossRef]
  3. B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
    [CrossRef]
  4. T. A. Johnson and S. A. Diddams, Appl. Phys. B 107, 31 (2012).
    [CrossRef]
  5. N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
    [CrossRef]
  6. M. Shirasaki, Opt. Lett. 21, 366 (1996).
    [CrossRef]
  7. S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
    [CrossRef]
  8. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008).
    [CrossRef]
  9. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
    [CrossRef]
  10. F. Benabid, Philos. Trans. R. Soc. A 364, 3439 (2006).
    [CrossRef]
  11. L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
    [CrossRef]
  12. A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
    [CrossRef]
  13. M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
    [CrossRef]

2012 (2)

T. A. Johnson and S. A. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

2011 (2)

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

2010 (3)

2009 (2)

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[CrossRef]

M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
[CrossRef]

2008 (1)

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef]

2006 (1)

F. Benabid, Philos. Trans. R. Soc. A 364, 3439 (2006).
[CrossRef]

1996 (1)

Adler, F.

Balslev-Clausen, D.

Baumann, E.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Becker, T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Benabid, F.

F. Benabid, Philos. Trans. R. Soc. A 364, 3439 (2006).
[CrossRef]

Bernhardt, B.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Bjork, B.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

Briles, T. C.

Coddington, I.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
[CrossRef]

Coffey, T.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

Cornell, E. A.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

Cossel, K. C.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[CrossRef]

M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
[CrossRef]

de Miranda, M. H. G.

M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
[CrossRef]

Diddams, S. A.

T. A. Johnson and S. A. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef]

Fermann, M. E.

Fleisher, A. J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

Foltynowicz, A.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
[CrossRef]

Giorgetta, F. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Hänsch, T. W.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Hartl, I.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef]

Jacquet, P.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Johnson, T. A.

T. A. Johnson and S. A. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

Kirchner, M. S.

Maslowski, P.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
[CrossRef]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef]

Newbury, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
[CrossRef]

Picqué, N.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Shirasaki, M.

Sinclair, L. C.

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

Sorokin, E.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Sorokina, I. T.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Swann, W. C.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

N. R. Newbury, I. Coddington, and W. C. Swann, Opt. Express 18, 7929 (2010).
[CrossRef]

Thon, R.

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

Thorpe, M. J.

Ye, J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

F. Adler, P. Masłowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
[CrossRef]

M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
[CrossRef]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, Opt. Lett. 34, 1330 (2009).
[CrossRef]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008).
[CrossRef]

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Appl. Phys. B (3)

B. Bernhardt, E. Sorokin, P. Jacquet, R. Thon, T. Becker, I. T. Sorokina, N. Picqué, and T. W. Hänsch, Appl. Phys. B 100, 3 (2010).
[CrossRef]

T. A. Johnson and S. A. Diddams, Appl. Phys. B 107, 31 (2012).
[CrossRef]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. Bjork, and J. Ye, Appl. Phys. B, doi:10.1007/s00340-012-5024-7 (2012).
[CrossRef]

Chem. Phys. Lett. (1)

M. J. Thorpe, F. Adler, K. C. Cossel, M. H. G. de Miranda, and J. Ye, Chem. Phys. Lett. 468, 1 (2009).
[CrossRef]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Philos. Trans. R. Soc. A (1)

F. Benabid, Philos. Trans. R. Soc. A 364, 3439 (2006).
[CrossRef]

Phys. Rev. A (1)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newbury, Phys. Rev. A 84, 062513 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

L. C. Sinclair, K. C. Cossel, T. Coffey, J. Ye, and E. A. Cornell, Phys. Rev. Lett. 107, 093002 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) MIR light (OPO or cw source) is coupled into the imaging system through a 60 cm piece of air–core PCF [10]. (b) Image of the broadband 100 MHz, 3 μm comb (gray) through the 97% reflectivity VIPA spectrometer (<10μs integration time); superimposed is a series of CW frequencies (spots) that are used to measure the resolution and FSR of the VIPA. (c) Single lineout of a CW spot showing the 600 MHz spectrometer resolution. (d) Spectral resolution for different CW laser frequencies at 15° (squares) and 23° (circles) incidence angles into the VIPA. (e) 2.0 GHz MIR frequency comb at 3.8 μm showing individual comb lines, with a resolution across the image of 600 MHz at a 15° angle of incidence, using a 98% reflectivity VIPA.

Fig. 2.
Fig. 2.

Noise characteristics of the MIR VIPA spectrometer obtained from a series of 1500 images. The standard deviation (SD) of the absorption noise, ε, is plotted versus the number of spectra averaged. Top axes indicate the exposure (integration) time and the real time required to read out the image. Error bars were determined from repeated measurements.

Fig. 3.
Fig. 3.

(Top) Sample VIPA image (background/signal) for a 20 cm cell with <1% CH4 in 300 Torr N2. Images with two grating angles are concatenated to cover 210nm of the OPO bandwidth. (Bottom) Experimental lineout spectrum (red, top). The blue (bottom) spectrum is a fit to the experimental data based on HITRAN line positions and strengths.

Fig. 4.
Fig. 4.

(a) Lineout spectrum from a single frame (320×320pixels) of a 1500 frame movie of methane gas entering a 20 cm gas cell (b) Zooming in to one set of methane lines, a false color plot shows the absorption increasing with time at a rate of 2.67ms/frame. (c) The absorption of a single methane line is monitored versus time. (d) Difference (Δ) of absorption spectra from the VIPA image highlighting the achievable detection sensitivity between 2 images separated by 2.67 ms (red, bottom) and 5.34 ms (blue, top). Overlaid is the 3 Torr methane spectrum (dashed).

Metrics