A simple interferometric polarimeter with an integrated calibration scheme is proposed for accurate and fast mapping of the state of polarization (SOP). Conventional single-shot polarimeters that detect the amplitude and phase of orthogonally polarized field components by interferometry using Fourier fringe analysis suffers from errors caused by the imperfect reference beam and ambiguity in the spatial carrier frequency in the fringe pattern. In the proposed system, the integrated calibration scheme eliminates those error sources and enables accurate measurement of SOP without prior knowledge of the reference beam and the spatial carrier frequency.

© 2012 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. C. F. LaCasse, R. A. Chipman, and J. S. Tyo, Opt. Express 19, 14976 (2011).
  2. Y. Ohtsuka and K. Oka, Appl. Opt. 33, 2633 (1994).
  3. M. Takeda, H. Ina, and S. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).
  4. T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathe, and C. Depursinge, Appl. Opt. 44, 4461 (2005).
  5. K. Oka and T. Kaneko, Opt. Express 11, 1510 (2003).
  6. S. Drobczynski and H. Kasprzak, Appl. Opt. 44, 3160 (2005).
  7. H. Luo, K. Oka, N. Hagen, T. Tkaczyk, and E. L. Dereniak, Appl. Opt. 45, 8400 (2006).
  8. H. Luo, K. Oka, E. DeHoog, M. Kudenov, J. Schiewgerling, and E. L. Dereniak, Appl. Opt. 47, 4413 (2008).
  9. E. DeHoog, H. Luo, K. Oka, E. Dereniak, and J. Schwiegerling, Appl. Opt. 48, 1663 (2009).

2011 (1)

2009 (1)

2008 (1)

2006 (1)

2005 (2)

2003 (1)

1994 (1)

1982 (1)

Chipman, R. A.

Colomb, T.

Cuche, E.

DeHoog, E.

Depursinge, C.

Dereniak, E.

Dereniak, E. L.

Drobczynski, S.

Durr, F.

Hagen, N.

Ina, H.

Kaneko, T.

Kasprzak, H.

Kobayashi, S.

Kudenov, M.

LaCasse, C. F.

Limberger, H. G.

Luo, H.

Marquet, P.

Ohtsuka, Y.

Oka, K.

Salathe, R.-P.

Schiewgerling, J.

Schwiegerling, J.

Takeda, M.

Tkaczyk, T.

Tyo, J. S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup. (b) 400×400 pixel central region of a typical interferogram recorded with a wave plate as sample. (c) Amplitude of Fourier spectrum of the interferogram shown as a 3-D surface plot; the four isolated spectral peaks shown encircled are the Fourier spectra for the terms a0x(r)aRx*(r),a0y(r)aRy*(r), Ex(r)aRx*(r) and Ey(r)aRy*(r), which are filtered and inverse Fourier transformed to get the interference terms.

Fig. 2.
Fig. 2.

(a) SOP mapped onto Poincare sphere for (a) half-wave plate; (b) quarter-wave plate; and (c) plastic overhead projector sheet, respectively, used as the sample.

Fig. 3.
Fig. 3.

Folded overhead projector sheet as sample with spatially varying SOP.

Fig. 4.
Fig. 4.

(a) Intensity distribution on the folded overhead projector sheet; (b) intensity distribution detected through an analyzer; (c) frequency-multiplexed interferogram; (d) amplitude and (e) phase variation of Ex(r)/Ey(r); (f) SOP corresponding to pixels 141 to 266 from the first line of the images (a) to (e) mapped on the Poincare sphere.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.