Abstract

We introduce optomechanical nanoantennae, which show dramatic changes in scattering properties by minuscule changes in geometry. These structures are very compact, with a volume 500 times smaller than free-space optical wavelength volume. This deep subwavelength geometry leads to high speed and low switching power. The bandwidth of the device is about 4.4 GHz, with a switching energy of only 35 pJ. Such antenna structures could lead to compact and high-speed all-optical nanoswitches.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription