Abstract

Direct amplification of output from chirped pulse oscillator (CPO) to 3.3 W of average power (pulse energy of 118 nJ in 20 ps pulse duration before compression) was achieved in a properly designed cladding pumped large mode area Er-doped fiber. Various configurations of CPO cavity with different FWHM of output spectrum and pulse duration were investigated. Fourier limit compression with 480 fs pulse duration and 32 kW peak power has been obtained for pulses with 14.8 nm FWHM spectrum. Subsequent nonlinear compression in a standard SMF-28 fiber yielded pulses as short as 145 fs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, Opt. Lett. 34, 1585 (2009).
    [CrossRef]
  2. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Express 19, 255 (2011).
    [CrossRef]
  3. A. Cabasse, D. Gaponov, K. Ndao, A. Khadour, J.-L. Oudar, and G. Martel, Opt. Lett. 36, 2620 (2011).
    [CrossRef]
  4. F. Morin, F. Druon, M. Hanna, and P. Georges, Opt. Lett. 34, 1991 (2009).
    [CrossRef]
  5. J. C. Jasapara, A. DeSantolo, J. W. Nicholson, A. D. Yablon, and Z. Várallyay, Opt. Express 16, 18869 (2008).
    [CrossRef]
  6. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, Opt. Lett. 32, 2429 (2007).
    [CrossRef]
  7. L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
    [CrossRef]
  8. W. H. Renninger, A. Chong, and F. W. Wise, Opt. Lett. 33, 3025 (2008).
    [CrossRef]
  9. M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, Opt. Lett. 34, 3355 (2009).
    [CrossRef]
  10. Z. Huang, J. Wang, H. Lin, D. Xu, R. Zhang, Y. Deng, and X. Wei, J. Opt. Soc. Am. B 29, 1418 (2012).
    [CrossRef]

2012

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

Z. Huang, J. Wang, H. Lin, D. Xu, R. Zhang, Y. Deng, and X. Wei, J. Opt. Soc. Am. B 29, 1418 (2012).
[CrossRef]

2011

2009

2008

2007

Andrejco, M. J.

Baumgartl, M.

Bubnov, M. M.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, Opt. Lett. 34, 3355 (2009).
[CrossRef]

Cabasse, A.

Carstens, H.

Chong, A.

Deng, Y.

DeSantolo, A.

DiGiovanni, D.

Druon, F.

Eidam, T.

Gaponov, D.

Georges, P.

Guryanov, A. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, Opt. Lett. 34, 3355 (2009).
[CrossRef]

Hädrich, S.

Hanna, M.

Headley, C.

Huang, Z.

Jansen, F.

Jasapara, J. C.

Jauregui, C.

Khadour, A.

Kotov, L. V.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

Likhachev, M. E.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, Opt. Lett. 34, 3355 (2009).
[CrossRef]

Limpert, J.

Lin, H.

Lipatov, D. S.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

M. E. Likhachev, M. M. Bubnov, K. V. Zotov, D. S. Lipatov, M. V. Yashkov, and A. N. Guryanov, Opt. Lett. 34, 3355 (2009).
[CrossRef]

Martel, G.

Medvedkov, O. I.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

Morin, F.

Ndao, K.

Nicholson, J. W.

Ortaç, B.

Oudar, J.-L.

Renninger, W. H.

Rothhardt, J.

Stutzki, F.

Tünnermann, A.

Várallyay, Z.

Vechkanov, N. N.

L. V. Kotov, M. E. Likhachev, M. M. Bubnov, O. I. Medvedkov, D. S. Lipatov, N. N. Vechkanov, and A. N. Guryanov, Quantum Electron. 42, 432 (2012).
[CrossRef]

Wang, J.

Wei, X.

Wise, F. W.

Xu, D.

Yablon, A. D.

Yashkov, M. V.

Zhang, R.

Zotov, K. V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Fully fibered experimental set-up. Dots represent fusion splices. CPO, master oscillator; ISO, isolators.

Fig. 2.
Fig. 2.

Linear amplification of 20 ps seed pulses at the maximum output average signal power of 3.3 W. (a) Top-x, right-y axes: slope efficiency. Bottom-x, left-y axes: input and output spectra. (b) Autocorrelation trace of the output pulse before (blue) and after (red) compression.

Fig. 3.
Fig. 3.

Linear amplification of 14 ps seed pulse at the maximum average power of 1 W. (a) Input and output spectra; (b) autocorrelation traces of the output pulse before (blue) and after (red) compression.

Fig. 4.
Fig. 4.

Pulse distortion in case of 3.5 ps seed pulse. (a) Experimental autocorrelation traces measured at the output of the amplifier for different amplifier pump powers (P1=5W, P2=7W, P3=10W, P4=13W). (b) Autocorrelation traces retrieved from numerical modelling with different saturation energies Esat of the amplifier gain (Esat is proportional to the pump power).

Fig. 5.
Fig. 5.

Amplification of 9.3 ps externally stretched seed pulse with broad 14.77 nm spectrum. (a) Input and output spectra. (b) Autocorrelation traces of the externally stretched seed pulse (black) and amplified pulse at 1 W output average power before (blue) and after (red) compression.

Fig. 6.
Fig. 6.

Nonlinear compression in 1 m of SMF28 fiber of 480 fs pulse. (a) Pulse spectra with different injected pulse energy (in cyan—maximum Ppeak=3.5kW). (b) Corresponding autocorrelation traces. Autocorrelation of 145 fs pulse is in cyan.

Metrics