Abstract

We present a diode-pumped quasi-three-level neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 885 nm, based on the F3/24I9/24 transition, generally used for a 946 nm emission. Combined with polarization components (Nd:YAG), the electro-optical crystal KH2PO4 (KDP) formed a Lyot filter in the cavity and compressed the available gain bandwidth. With an incident pump power of 9.2 W, a 714 mW continuous-wave (CW) output at 885 nm was achieved, and the optical-to-optical efficiency was 7.8%. With an adjustable voltage applied to the KDP crystal, the laser wavelength could be tuned from 885 nm to 884 nm. A simultaneous dual-wavelength Nd:YAG laser at 885 nm and 884 nm was also realized by adjusting the free spectral range of the Lyot filter. To our knowledge, it is the first study that has realized the tuning between the 884 and 885 nm lines and the simultaneous dual-wavelength CW laser operation at 885 nm and 884 nm.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan and R. L. Byer, IEEE J. Quantum Electron. 23, 605 (1987).
    [CrossRef]
  2. T. Y. Fan and R. L. Byer, Opt. Lett. 12, 809 (1987).
    [CrossRef]
  3. T. Kellner, F. Heine, and G. Huber, Appl. Phys. B 65, 789 (1997).
    [CrossRef]
  4. P. Zeller and P. Peuser, Opt. Lett. 25, 34 (2000).
    [CrossRef]
  5. R. Zhou, E. Li, H. Li, P. Wang, and J. Yao, Opt. Lett. 31, 1869 (2006).
    [CrossRef]
  6. C. Czeranowsky, E. Heumann, and G. Huber, Opt. Lett. 28, 432 (2003).
    [CrossRef]
  7. F. Chen, X. Yu, R. Yan, X. Li, C. Wang, J. Yu, and Z. Zhang, Opt. Lett. 35, 2714 (2010).
    [CrossRef]
  8. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. D. Bartolo, J. Opt. Soc. Am. B 15, 2794 (1998).
    [CrossRef]
  9. B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
    [CrossRef]
  10. M. Castaing, E. Hérault, F. Balembois, P. Georges, C. Varona, P. Loiseau, and G. Aka, Opt. Lett. 32, 799 (2007).
    [CrossRef]
  11. Y. F. Lü, J. Xia, W. B. Cheng, J. F. Chen, G. B. Ning, and Z. L. Liang, Opt. Lett. 35, 3670 (2010).
    [CrossRef]
  12. E. Hérault, F. Balembois, and P. Georges, Opt. Lett. 31, 2731 (2006).
    [CrossRef]
  13. F. Balembois, M. Castaing, E. Hérault, and P. Georges, Laser Photon. Rev. 5, 659 (2011).
    [CrossRef]

2011 (1)

F. Balembois, M. Castaing, E. Hérault, and P. Georges, Laser Photon. Rev. 5, 659 (2011).
[CrossRef]

2010 (2)

2007 (1)

2006 (2)

2003 (1)

2001 (1)

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

2000 (1)

1998 (1)

1997 (1)

T. Kellner, F. Heine, and G. Huber, Appl. Phys. B 65, 789 (1997).
[CrossRef]

1987 (2)

T. Y. Fan and R. L. Byer, IEEE J. Quantum Electron. 23, 605 (1987).
[CrossRef]

T. Y. Fan and R. L. Byer, Opt. Lett. 12, 809 (1987).
[CrossRef]

Aka, G.

Balembois, F.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. D. Bartolo, J. Opt. Soc. Am. B 15, 2794 (1998).
[CrossRef]

Bartolo, B. D.

Byer, R. L.

T. Y. Fan and R. L. Byer, IEEE J. Quantum Electron. 23, 605 (1987).
[CrossRef]

T. Y. Fan and R. L. Byer, Opt. Lett. 12, 809 (1987).
[CrossRef]

Castaing, M.

F. Balembois, M. Castaing, E. Hérault, and P. Georges, Laser Photon. Rev. 5, 659 (2011).
[CrossRef]

M. Castaing, E. Hérault, F. Balembois, P. Georges, C. Varona, P. Loiseau, and G. Aka, Opt. Lett. 32, 799 (2007).
[CrossRef]

Chen, F.

Chen, J. F.

Cheng, W. B.

Czeranowsky, C.

Equa, R. W.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

Equall, R. W.

Fan, T. Y.

T. Y. Fan and R. L. Byer, IEEE J. Quantum Electron. 23, 605 (1987).
[CrossRef]

T. Y. Fan and R. L. Byer, Opt. Lett. 12, 809 (1987).
[CrossRef]

Georges, P.

Heine, F.

T. Kellner, F. Heine, and G. Huber, Appl. Phys. B 65, 789 (1997).
[CrossRef]

Hérault, E.

Heumann, E.

Huber, G.

C. Czeranowsky, E. Heumann, and G. Huber, Opt. Lett. 28, 432 (2003).
[CrossRef]

T. Kellner, F. Heine, and G. Huber, Appl. Phys. B 65, 789 (1997).
[CrossRef]

Hutcheson, R. L.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. D. Bartolo, J. Opt. Soc. Am. B 15, 2794 (1998).
[CrossRef]

Kellner, T.

T. Kellner, F. Heine, and G. Huber, Appl. Phys. B 65, 789 (1997).
[CrossRef]

Li, E.

Li, H.

Li, X.

Liang, Z. L.

Loiseau, P.

Lü, Y. F.

Ning, G. B.

Peuser, P.

Varona, C.

Walsh, B. M.

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, and R. W. Equa, IEEE J. Quantum Electron. 37, 1203 (2001).
[CrossRef]

B. M. Walsh, N. P. Barnes, R. L. Hutcheson, R. W. Equall, and B. D. Bartolo, J. Opt. Soc. Am. B 15, 2794 (1998).
[CrossRef]

Wang, C.

Wang, P.

Xia, J.

Yan, R.

Yao, J.

Yu, J.

Yu, X.

Zeller, P.

Zhang, Z.

Zhou, R.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy structure of a Nd:YAG crystal.

Fig. 2.
Fig. 2.

Experimental configuration for the diode-pumped Nd:YAG laser at 885 nm.

Fig. 3.
Fig. 3.

Output power versus the incident pump power for the 885 nm emission. Inset, optical spectrum of the 885 nm emission at the maximum output power.

Fig. 4.
Fig. 4.

Output power versus the incident pump power for the 884 nm emission. Inset, optical spectrum of the 884 nm emission at the maximum output power.

Fig. 5.
Fig. 5.

Output power versus incident pump power for dual-wavelength operation. Inset, optical spectrum of dual-wavelength operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Tround=cos2[4πλ(nxne)d],
ΔλF=λ22(nxne)d.

Metrics