Abstract

Spherical domes are created on the surface of polycarbonate samples, and microvoids are formed within the bulk using only a femtosecond oscillator with pulse energy of just 0.47 nJ. Size of spherical domes and shape of microvoids are controlled by changing the laser focus inside the material. Their formation is explained by a combination of heat accumulation and dome formation dynamics, where the dome acts as a microlens shifting the laser focus within the sample. The technique described here provides a simple avenue for fabricating smooth microlens arrays of various sizes and opens the possibility for direct fabrication of complex three-dimensional microfluidic channels in transparent materials.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003).
    [CrossRef]
  2. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
    [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, Opt. Lett. 26, 42 (2001).
    [CrossRef]
  4. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
    [CrossRef]
  5. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, Opt. Lett. 30, 1060 (2005).
    [CrossRef]
  6. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, Opt. Lett. 29, 1312 (2004).
    [CrossRef]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef]
  8. D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002).
    [CrossRef]
  9. D. Day and M. Gu, Opt. Express 13, 5939 (2005).
    [CrossRef]
  10. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
    [CrossRef]
  11. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, Opt. Express 13, 4708 (2005).
    [CrossRef]
  12. R. R. Gattass, L. R. Cerami, and E. Mazur, Opt. Express 14, 5279 (2006).
    [CrossRef]
  13. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
    [CrossRef]
  14. A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
    [CrossRef]
  15. A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
    [CrossRef]

2008 (2)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

2007 (1)

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

2006 (2)

R. R. Gattass, L. R. Cerami, and E. Mazur, Opt. Express 14, 5279 (2006).
[CrossRef]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

2005 (3)

2004 (1)

2003 (2)

C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

2002 (1)

D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002).
[CrossRef]

2001 (2)

1996 (1)

Arai, A. Y.

Bhardwaj, V. R.

Borowiec, A.

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

Callan, J. P.

Cerami, L. R.

Corkum, P. B.

Crawford, T. H. R.

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

Day, D.

D. Day and M. Gu, Opt. Express 13, 5939 (2005).
[CrossRef]

D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002).
[CrossRef]

Eaton, S. M.

Finlay, R. J.

Fujimoto, J. G.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
[CrossRef]

Gattass, R. R.

Glezer, E. N.

Gu, M.

D. Day and M. Gu, Opt. Express 13, 5939 (2005).
[CrossRef]

D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002).
[CrossRef]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Her, T.-H.

Herman, P. R.

Hirao, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Hnatovsky, C.

Huang, L.

Ippen, E. P.

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Kowalevicz, A. M.

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Maire, E.

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

Mazur, E.

Milosavljevic, M.

Minoshima, K.

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Miura, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

Preston, S. J.

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

Rayner, D. M.

Sakakura, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
[CrossRef]

Shah, L.

Sharma, V.

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Simova, E.

Streltsov, A. M.

Taylor, R. S.

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Toda, H.

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

Weck, A.

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

Wilkinson, D. S.

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

Yoshino, F.

Zhang, H.

Acta Mater. (1)

A. Weck, D. S. Wilkinson, E. Maire, and H. Toda, Acta Mater. 56, 2919 (2008).
[CrossRef]

Appl. Phys. A-Mater. (3)

A. Weck, T. H. R. Crawford, A. Borowiec, D. S. Wilkinson, and S. J. Preston, Appl. Phys. A-Mater. 86, 55 (2007).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A-Mater. 77, 109 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, Appl. Phys. A-Mater. 76, 351 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

D. Day and M. Gu, Appl. Phys. Lett. 80, 2404 (2002).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

SEM image of the top surface of a polycarbonate sample after laser irradiation at different depths. The number at the top of the image is the distance in micrometers from the sample surface. Scale bar is 100 μm.

Fig. 2.
Fig. 2.

SEM image of a cross section showing voids created at different depths. The number at the top of the image is the distance in micrometers from the sample surface. Scale bar is 100 μm.

Fig. 3.
Fig. 3.

SEM image of the cross section of a hole at a distance of (a) 50 μm; (b) 60 μm; (c) 70 μm; and (d) 100 μm from the sample surface. White arrows indicate the resolidified region. Scale bar is 20 μm.

Fig. 4.
Fig. 4.

Change in focal point of the laser as a function of initial laser focal depth for two domes with radius of curvature of 24 μm and 31 μm corresponding to experimental focal depths of 50μm and 70μm. A focal depth of 50μm is predicted to have a focal shift of 22 μm.

Metrics