Abstract

We propose a new approach to experimentally determine the spatial resolution of nanogap quantum dot (QD) photodetectors consist of solution-processed QDs. Cross talk between a pair of closely positioned QD photodetectors was measured. Devices with 200 nm spacing exhibit low crosstalk of 8.4%. A single QD photodetector also shows high sensitivity, with a lowest detectable optical intensity of 95.3fW/μm2 achieved. The results show the potential of nanogap QD photodetectors for applications in high-density imaging/sensing arrays.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
    [CrossRef]
  2. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
    [CrossRef]
  3. G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
    [CrossRef]
  4. M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
    [CrossRef]
  5. L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
    [CrossRef]
  6. M. C. Hegg and L. Y. Lin, Opt. Express 15, 17163 (2007).
    [CrossRef]
  7. G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
    [CrossRef]
  8. V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
    [CrossRef]
  9. S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
    [CrossRef]

2012

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

2010

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

2009

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

2008

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

2007

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

M. C. Hegg and L. Y. Lin, Opt. Express 15, 17163 (2007).
[CrossRef]

2006

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

2003

G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
[CrossRef]

2002

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Agranov, G.

G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
[CrossRef]

Baehr-Jones, T.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

Bawendi, M.

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Berezin, V.

G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
[CrossRef]

Biswas, S.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

Clifford, J.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Dadosh, T.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Drndic, M.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Dutta, M.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

Fairfield, J. A.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Fischbein, M. D.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Fischer, A.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Geyer, S.

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Gosztola, D. J.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

Halpert, E.

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Hegg, M. C.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

M. C. Hegg and L. Y. Lin, Opt. Express 15, 17163 (2007).
[CrossRef]

Hochberg, M.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

Hoogland, S.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Horning, M. P.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

Howard, I.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Kastner, M.

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Kawazoe, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Klem, E.

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Kobayashi, K.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Konstantatos, G.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Levina, L.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Lin, L. Y.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

M. C. Hegg and L. Y. Lin, Opt. Express 15, 17163 (2007).
[CrossRef]

Ohtsu, M.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Porter, V. J.

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Sargent, E. H.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Stroscio, M. A.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

Tsai, R. H.

G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
[CrossRef]

Wiederrecht, G. P.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

Willis, L. J.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Yatsui, T.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Appl. Phys. Lett.

M. C. Hegg, M. P. Horning, T. Baehr-Jones, M. Hochberg, and L. Y. Lin, Appl. Phys. Lett. 96, 101118 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

IEEE Trans. Electron Devices

G. Agranov, V. Berezin, and R. H. Tsai, IEEE Trans. Electron Devices 50, 4 (2003).
[CrossRef]

J. Electron. Mater.

S. Biswas, D. J. Gosztola, G. P. Wiederrecht, M. A. Stroscio, and M. Dutta, J. Electron. Mater. 41, 524 (2012).
[CrossRef]

J. Phys. Chem. C

V. J. Porter, S. Geyer, E. Halpert, M. Kastner, and M. Bawendi, J. Phys. Chem. C 112, 2308 (2008).
[CrossRef]

Nano Lett.

L. J. Willis, J. A. Fairfield, T. Dadosh, M. D. Fischbein, and M. Drndic, Nano Lett. 9, 4191 (2009).
[CrossRef]

Nat. Photon.

G. Konstantatos, J. Clifford, L. Levina, and E. H. Sargent, Nat. Photon. 1, 531 (2007).
[CrossRef]

Nature

G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E. H. Sargent, Nature 442, 180 (2006).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) 3D schematics of a nanogap QD photodetector integrated with CMOS circuitry. The QDs cover the surface of the device uniformly and are not shown in the drawing for clarity. (b) SEM image of a pair of nanogap QD photodetectors. The nanogap is 55 nm and the spacing between the two nanogaps is 200nm. The scale bar is 500 nm. The four large electrodes are for probe contacts.

Fig. 2.
Fig. 2.

Fabrication process of Si3N4–masked planar nanogap QD photodetectors. A pair of closely spaced devices is shown in the illustration. (a) Starting substrate: Si with 1 μm thick SiO2. (b) Patterning the nanogap electrodes (300 Å Au with a 20 Å Cr adhesion layer) using EBL. (c) Depositing 400 nm thick Si3N4 using PECVD. (d) and (e) Opening windows in the Si3N4 layer using EBL and RIE. (f) Drop-casting QDs.

Fig. 3.
Fig. 3.

SEM images of the nanogap electrodes at different steps prior to QD deposition. (a) An overall image of electrodes. (b) A close-up image of the central electrode region [Step Fig. 2(b)]. (c) A close-up image of the central electrode region covered with Si3N4 [Step Figs. 2(d) and 2(e)]. The red arrow points out the central window region.

Fig. 4.
Fig. 4.

Photocurrent versus input optical intensity of the nanogap QD photodetector. The lowest detectable intensity is 95.3fW/μm2.

Metrics