Abstract

We report a single frequency lasing phenomenon with a narrow linewidth of 3kHz in cascaded fiber that is composed of three types of low-loss communication fibers. The Rayleigh scattering of the Brillouin Stokes light created in the middle fiber section along both directions is enhanced by the other two fiber sections. When the Brillouin gain of the middle fiber exceeds the effective loss of the Brillouin stokes light in a roundtrip, a narrow linewidth lasing is observed on the top of the Brillouin spectrum line of the middle fiber. To the best of our knowledge, it is the first report on Rayleigh scattering-assisted Brillouin lasing with single frequency and narrow linewidth in cascaded low-loss communication fibers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2010).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).
  3. A. Kobyakov, M. Sauer, and D. Chowdhury, Adv. Opt. Photon. 2, 1 (2010).
    [CrossRef]
  4. R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990).
    [CrossRef]
  5. A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]
  6. A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
    [CrossRef]
  7. A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.
  8. A. A. Fotiadi, Nature Photon. 4, 204 (2010).
    [CrossRef]
  9. S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
    [CrossRef]
  10. H. Cao, Opt. Photon. News 16(1), 24 (2005).
    [CrossRef]
  11. A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984).
    [CrossRef]
  12. D. Derickson, Fiber Optic Test and Measurement, (Prentice Hall PTR, 1998).

2010 (3)

A. A. Fotiadi, Nature Photon. 4, 204 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

A. Kobyakov, M. Sauer, and D. Chowdhury, Adv. Opt. Photon. 2, 1 (2010).
[CrossRef]

2005 (1)

H. Cao, Opt. Photon. News 16(1), 24 (2005).
[CrossRef]

2002 (1)

A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

1998 (1)

1990 (1)

R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990).
[CrossRef]

1984 (1)

A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Boyd, R. W.

R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2010).

Cao, H.

H. Cao, Opt. Photon. News 16(1), 24 (2005).
[CrossRef]

Castanon, J. D. A.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Chowdhury, D.

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Delavaux, J. M.

A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement, (Prentice Hall PTR, 1998).

Fotiadi, A. A.

A. A. Fotiadi, Nature Photon. 4, 204 (2010).
[CrossRef]

A. A. Fotiadi and R. V. Kiyan, Opt. Lett. 23, 1805 (1998).
[CrossRef]

A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.

Gold, M. P.

A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Hartog, A. H.

A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Kiyan, R. V.

Kobyakov, A.

Megret, P.

A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Preda, E.

A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.

Rzazewski, K.

R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990).
[CrossRef]

Sauer, M.

Taher, A. E. E.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Toulouse, J.

A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Yeniay, A.

A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

Adv. Opt. Photon. (1)

IEEE J. Lightwave Technol. (2)

A. Yeniay, J. M. Delavaux, and J. Toulouse, IEEE J. Lightwave Technol. 20, 1425 (2002).
[CrossRef]

A. H. Hartog and M. P. Gold, IEEE J. Lightwave Technol. 2, 76 (1984).
[CrossRef]

Nature Photon. (2)

A. A. Fotiadi, Nature Photon. 4, 204 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. E. Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. A. Castanon, V. Karalekas, and E. V. Podivilov, Nature Photon. 4, 231 (2010).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

H. Cao, Opt. Photon. News 16(1), 24 (2005).
[CrossRef]

Phys. Rev. A (1)

R. W. Boyd and K. Rzazewski, Phys. Rev. A 42, 5514 (1990).
[CrossRef]

Other (4)

D. Derickson, Fiber Optic Test and Measurement, (Prentice Hall PTR, 1998).

A. A. Fotiadi, E. Preda, and P. Megret, in Proceedings of Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper CTuI6.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2010).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Cascaded fiber composed of three types of fibers with different Brillouin frequencies.

Fig. 2.
Fig. 2.

(a) Simulated Brillouin gain in fiber 1 and effective roundtrip loss for P1S as the function of pump power. (b)–(d) Simulated frequency probability distributions of Stokes lights for three types of fibers.

Fig. 3.
Fig. 3.

Experimental setup.

Fig. 4.
Fig. 4.

Experimental results of Brillouin spectrum of the cascaded fiber when pump light was set to 200 mW. (a)–(c) Measured Brillouin spectra for three types of fiber (20 MHz span) and (d) measured power spectrum of Brillouin lasing by using self-heterodyne.

Tables (1)

Tables Icon

Table 1. Parameters of Cascaded Fiber

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{PPz=αPPgBPPPS1PS1z=αPS1gBPPPS1rPRS1PRS1z=αPRS1+rPS1.
r2GB1(1e2αL2)(1e2αL3)4α2=1,

Metrics