Abstract

We report the development of a 10 GHz repetition rate all-fiber integrated femtosecond source tunable around 1.55 μm. A phase modulator and sharp spectral filter are used to convert the output of a tunable CW diode to a 10 GHz pulse train. These pulses are compressed using Raman soliton adiabatic compression in a 21 km long length of fiber to generate sub-300-fs duration pulses at a 10 GHz repetition rate. By tuning the wavelength of the diode and appropriate filtering, similar performance was achieved over a 20 nm bandwidth.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Reeves-Hall and J. Taylor, Electron. Lett. 37, 417 (2001).
    [CrossRef]
  2. T. Murphy, IEEE Photon. Technol. Lett. 14, 1424 (2002).
    [CrossRef]
  3. P. V. Mamyshev, Opt. Lett. 19, 2074 (1994).
    [CrossRef]
  4. A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
    [CrossRef]
  5. B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
    [CrossRef]
  6. S. V. Chernikov and P. V. Mamyshev, J. Opt. Soc. Am. B 8, 1633 (1991).
    [CrossRef]
  7. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, Opt. Lett. 18, 476 (1993).
    [CrossRef]
  8. M. L. V. Tse, P. Horak, J. H. V. Price, F. Poletti, F. He, and D. J. Richardson, Opt. Lett. 31, 3504 (2006).
    [CrossRef]
  9. J. C. Travers, J. M. Stone, A. B. Rulkov, B. A. Cumberland, A. K. George, S. V. Popov, J. C. Knight, and J. R. Taylor, Opt. Express 15, 13203 (2007).
    [CrossRef]
  10. K. J. Blow, N. J. Doran, and D. Wood, Opt. Lett. 12, 1011 (1987).
    [CrossRef]
  11. K. Smith and L. F. Mollenauer, Opt. Lett. 14, 751 (1989).
    [CrossRef]

2007 (1)

2006 (1)

2002 (1)

T. Murphy, IEEE Photon. Technol. Lett. 14, 1424 (2002).
[CrossRef]

2001 (1)

P. Reeves-Hall and J. Taylor, Electron. Lett. 37, 417 (2001).
[CrossRef]

2000 (1)

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
[CrossRef]

1994 (1)

1993 (1)

1991 (1)

1989 (1)

1987 (1)

1986 (1)

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

Avramopoulos, H.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

Blow, K. J.

Blumenthal, D.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
[CrossRef]

Chernikov, S. V.

Cumberland, B. A.

Dianov, E. M.

Doran, N. J.

George, A. K.

Gomes, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

Gouveia-Neto, A.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

He, F.

Horak, P.

Knight, J. C.

Mamyshev, P. V.

Mollenauer, L. F.

Murphy, T.

T. Murphy, IEEE Photon. Technol. Lett. 14, 1424 (2002).
[CrossRef]

New, G.

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

Ohlen, P.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
[CrossRef]

Olsson, B.-E.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
[CrossRef]

Payne, D. N.

Poletti, F.

Popov, S. V.

Price, J. H. V.

Rau, L.

B.-E. Olsson, P. Ohlen, L. Rau, and D. Blumenthal, IEEE Photon. Technol. Lett. 12, 846 (2000).
[CrossRef]

Reeves-Hall, P.

P. Reeves-Hall and J. Taylor, Electron. Lett. 37, 417 (2001).
[CrossRef]

Richardson, D. J.

Rulkov, A. B.

Smith, K.

Stone, J. M.

Taylor, J.

P. Reeves-Hall and J. Taylor, Electron. Lett. 37, 417 (2001).
[CrossRef]

A. Gomes, A. Gouveia-Neto, J. Taylor, H. Avramopoulos, and G. New, Opt. Commun. 59, 399 (1986).
[CrossRef]

Taylor, J. R.

Travers, J. C.

Tse, M. L. V.

Wood, D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Illustration of the principle behind CW-to-pulse-train conversion though spectral masking of a phase-modulated signal. (a) Phase modulation of a CW signal will lead to (b) an instantaneous optical frequency shift, which, if subject to spectral masking [shading on (b)] will lead to the generation of (c) short pulses corresponding to the extrema of the frequency shift.

Fig. 2.
Fig. 2.

System schematic. TLD, tunable laser diode; PC, polarization controller; LNPM, lithium niobate phase modulator; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; OC, optical circulator; DSF, dispersion shifted fiber; WDM, wavelength division multiplexer; RFL, Raman fiber laser.

Fig. 3.
Fig. 3.

(a) Optical spectrum of output from phase modulator before (gray) and after (black) bandpass filter. (b) Optical spectrum after Raman compressor stage with 2 W (black) and 5 W (gray dashed) of Raman pump power provided.

Fig. 4.
Fig. 4.

Pulse duration output from Raman amplifier with increasing pump power (solid line, filled circles), and output power with Raman pump power (dashed line).

Fig. 5.
Fig. 5.

Autocorrelations of output at various set wavelengths for 2 W of Raman pump power, labeled by center wavelength and FWHM duration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E=1.762|β2|γT,
zs=2π|β2|γ2E2.

Metrics