Abstract

We verify the feasibility of the proposed theoretical strategy for designing the broadband near-zero permittivity (ENZ) metamaterial at optical frequency range with numerical simulations. In addition, the designed broadband ENZ stack is used as meta-atoms to build functional nanophotonic devices with extraordinary properties, including an ultranarrow electromagnetic energy tunneling channel and an ENZ concave focusing lens.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
    [CrossRef]
  2. S. Feng, Phys. Rev. Lett. 108, 193904 (2012).
    [CrossRef]
  3. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  4. M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
    [CrossRef]
  5. A. Alù and N. Engheta, Opt. Express 15, 3318 (2007).
    [CrossRef]
  6. L. Sun and K. W. Yu, J. Opt. Soc. Am. B 28, 994 (2011).
    [CrossRef]
  7. R. W. Ziokowski, Phys. Rev. E 70, 046608 (2004).
    [CrossRef]
  8. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
    [CrossRef]
  9. M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
    [CrossRef]
  10. M. G. Silveirinha and N. Engheta, Phys. Rev. B 75, 075119 (2007).
    [CrossRef]
  11. M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
    [CrossRef]
  12. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
    [CrossRef]
  13. A. V. Goncharenko and K. R. Chen, J. Nanophoton. 4, 041530 (2010).
    [CrossRef]
  14. M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
    [CrossRef]
  15. L. Sun and K. W. Yu, J. Opt. Soc. Am. B 29, 984 (2012).
    [CrossRef]
  16. D. J. Bergman, Phys. Rev. B 192359 (1979).
    [CrossRef]
  17. D. J. Bergman, Solid State Physics 46147 (1992).
    [CrossRef]
  18. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
    [CrossRef]

2012

2011

2010

A. V. Goncharenko and K. R. Chen, J. Nanophoton. 4, 041530 (2010).
[CrossRef]

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

2008

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

2007

M. G. Silveirinha and N. Engheta, Phys. Rev. B 75, 075119 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù and N. Engheta, Opt. Express 15, 3318 (2007).
[CrossRef]

2006

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

2005

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

2004

R. W. Ziokowski, Phys. Rev. E 70, 046608 (2004).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

2002

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

1992

D. J. Bergman, Solid State Physics 46147 (1992).
[CrossRef]

1979

D. J. Bergman, Phys. Rev. B 192359 (1979).
[CrossRef]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

A. Alù and N. Engheta, Opt. Express 15, 3318 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Bergman, D. J.

D. J. Bergman, Solid State Physics 46147 (1992).
[CrossRef]

D. J. Bergman, Phys. Rev. B 192359 (1979).
[CrossRef]

Chen, K. R.

A. V. Goncharenko and K. R. Chen, J. Nanophoton. 4, 041530 (2010).
[CrossRef]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

Engheta, N.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, Phys. Rev. B 75, 075119 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù and N. Engheta, Opt. Express 15, 3318 (2007).
[CrossRef]

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

Feng, S.

S. Feng, Phys. Rev. Lett. 108, 193904 (2012).
[CrossRef]

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

Goncharenko, A. V.

A. V. Goncharenko and K. R. Chen, J. Nanophoton. 4, 041530 (2010).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Guerin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

Johnson, L.

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Moran, M.

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Roberts, M. J.

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

Silveirinha, M. G.

M. G. Silveirinha and N. Engheta, Phys. Rev. B 75, 075119 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Sun, L.

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

Yu, K. W.

Ziokowski, R. W.

R. W. Ziokowski, Phys. Rev. E 70, 046608 (2004).
[CrossRef]

J. Nanophoton.

A. V. Goncharenko and K. R. Chen, J. Nanophoton. 4, 041530 (2010).
[CrossRef]

M. J. Roberts, S. Feng, M. Moran, and L. Johnson, J. Nanophoton. 4, 043511 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. B

M. G. Silveirinha and N. Engheta, Phys. Rev. B 75, 075119 (2007).
[CrossRef]

M. G. Silveirinha and N. Engheta, Phys. Rev. B 76, 245109 (2007).
[CrossRef]

D. J. Bergman, Phys. Rev. B 192359 (1979).
[CrossRef]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Phys. Rev. E

R. W. Ziokowski, Phys. Rev. E 70, 046608 (2004).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75, 036603 (2007).
[CrossRef]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, Phys. Rev. E 70, 016608 (2004).
[CrossRef]

Phys. Rev. Lett.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, Phys. Rev. Lett. 100, 033903 (2008).
[CrossRef]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef]

S. Feng, Phys. Rev. Lett. 108, 193904 (2012).
[CrossRef]

M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

Solid State Physics

D. J. Bergman, Solid State Physics 46147 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Real part and the imaginary part of the effective permittivity based on the FDTD simulation and the theoretical analysis from Eq. (1). The insert indicates the structure geometry of the broadband ENZ meta-atom stack including five layers. The theoretical effective permittivity is plotted as dashed curves, while the numerically retrieved permittivity is denoted as solid curves. In addition, the real part is shown in red color [curves (1) and (2)], and the imaginary part is shown in blue color [curves (3) and (4)]. The light blue color region represents the ENZ operating frequency range.

Fig. 2.
Fig. 2.

(a) The electromagnetic energy can be squeezed and tunneled through a two dimensional H-shape channel made from the ENZ meta-atom stacks, but (b) cannot be transmitted through a silica channel with the same geometry, where the magnetic field distribution is displayed at 455 THz. (c) The energy flow distribution near the central channel region illustrates the squeezing and tunneling phenomenon.

Fig. 3.
Fig. 3.

The electromagnetic waves can be focused by a two dimensional concave lens made from the ENZ meta-atom stacks at (a) 455 THz and (b) 470 THz, where the magnetic field intensity distribution is displayed. (c) The energy flow with respect to the result of (a) clearly indicates the focusing of the electromagnetic energy. Because of the large quantity of the ENZ stacks within the concave lens, the detailed structure of the lens is not displayed here.

Tables (1)

Tables Icon

Table 1. Relative Thickness and Metallic Inclusion Filling Ratio of Each Layer Within the Stack

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εe(s)=[i=1Ndiε2(1fi/s)]1,
εe(s)=ε2[1i=1NFissi],
εe(i)=fiε+(1fi)ε2fiωp2ω(ω+iγ),

Metrics