Abstract

We show, by using numerical simulations, that self-similar pulses with a duration on the order of few nanoseconds and an energy on the order of 10 μJ can be obtained at the output of a fiber Bragg grating (FBG) written in a fiber amplifier. The evolution of the amplified pulses is determined by the combined effect of Kerr nonlinearity, normal-dispersion, gain, and gain saturation, which limit the pulse energy. The output pulse mainly depends on the initial pulse energy rather than on the initial pulse profile. The reduced group velocity in FBGs can significantly increase the total gain for a given amplifier length. Hence we find that the proposed amplification scheme can be highly advantageous for amplification of nanosecond-scale pulses in fiber amplifiers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, J. Opt. Soc. Am. B 27, B63 (2010).
    [CrossRef]
  2. D. Anderson, M. Desaix, M. Karlson, M. Lisak, and M. L. Quiroga-Teixeiro, J. Opt. Soc. Am. B 10, 1185 (1993).
    [CrossRef]
  3. K. Tamura and M. Nakazawa, Opt. Lett. 21, 68 (1996).
    [CrossRef]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef]
  5. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
    [CrossRef]
  6. B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
    [CrossRef]
  7. Y. P. Shapira and M. Horowitz, Phys. Rev. A 83, 053803 (2011).
  8. C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990).
    [CrossRef]
  9. C. M. de Sterke and B. J. Eggleton, Phys. Rev. E 59, 1267 (1999).
    [CrossRef]

2011

Y. P. Shapira and M. Horowitz, Phys. Rev. A 83, 053803 (2011).

2010

2006

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

2000

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

1999

C. M. de Sterke and B. J. Eggleton, Phys. Rev. E 59, 1267 (1999).
[CrossRef]

1996

1993

1990

C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef]

1988

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Anderson, D.

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Billet, C.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

Clarkson, W. A.

de Sterke, C. M.

C. M. de Sterke and B. J. Eggleton, Phys. Rev. E 59, 1267 (1999).
[CrossRef]

C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef]

Desaix, M.

Dudley, J. M.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Eggleton, B. J.

C. M. de Sterke and B. J. Eggleton, Phys. Rev. E 59, 1267 (1999).
[CrossRef]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Ferrière, R.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Horowitz, M.

Y. P. Shapira and M. Horowitz, Phys. Rev. A 83, 053803 (2011).

Karlson, M.

Kibler, B.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Lacourt, P. A.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

Lisak, M.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Nakazawa, M.

Nilsson, J.

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Quiroga-Teixeiro, M. L.

Richardson, D. J.

Shapira, Y. P.

Y. P. Shapira and M. Horowitz, Phys. Rev. A 83, 053803 (2011).

Sipe, J. E.

C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

Tamura, K.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

IEEE J. Quantum Electron.

P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quantum Electron. 24, 398 (1988).
[CrossRef]

IEEE Photon. Technol. Lett.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, and J. M. Dudley, IEEE Photon. Technol. Lett. 18, 1831 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

Y. P. Shapira and M. Horowitz, Phys. Rev. A 83, 053803 (2011).

C. M. de Sterke and J. E. Sipe, Phys. Rev. A 42, 550 (1990).
[CrossRef]

Phys. Rev. E

C. M. de Sterke and B. J. Eggleton, Phys. Rev. E 59, 1267 (1999).
[CrossRef]

Phys. Rev. Lett.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Evolution of pulse power profile P along the propagation in FBG-FA. The initial pulse is a Gaussian pulse with FWHM of 224 ps, energy 8.6 nJ, and peak power of 30.2 W.

Fig. 2.
Fig. 2.

Spatial pulse power and phase profiles after propagating 1.38 m along the FBG-FA when the saturation energy equals 15 μJ (blue-solid line), the saturation energy is (red-dashed line), and the least-square fit to a parabolic pulse (green dashed-dotted line). (a) and (b) show the pulse spatial power profile P—(a) in kilowatts, (b) in decibels—and (c) is the spatial frequency δfdψ/dz, where ψ is the phase of the u+ envelope.

Fig. 3.
Fig. 3.

(a) Input Gaussian pulses with energy of 7.2 nJ and different pulse durations and (b) the corresponding output pulses after propagating 1.9 m in FBG-FA. The initial pulse FWHM was 99 ps (green dashed-dotted line), 133 ps (blue-solid line), and 199 ps (red-dashed line).

Fig. 4.
Fig. 4.

Temporal pulse power (a) and instantaneous frequency (b) profiles at the output of 1.5 m long apodized FBG-FA when the saturation energy is 15 μJ (blue-solid line), and when the saturation energy is (red-dashed line).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

±jzu±+jVg1tu±+κuj12g(z,t)u±+Γ(|u±|2+2|u|2)u±=0,
g(z,t)=g0exp[tstPs(z,s)ds/Esat],

Metrics