Abstract

We experimentally explored the influence of passive harmonic mode locking on the temporal and spectral features of a ytterbium-doped fiber laser. Similar dependences of free-running linewidth of the laser carrier-envelope offset frequency (f0) on the intracavity net dispersion were observed for the fundamental-, second-, and third-order mode-locking states. Due to the reduction of nonlinear effects and supermode phase locking that balanced the third-order dispersion in the fiber cavity, the third-order harmonic mode-locking exhibited the narrowest free-running f0 linewidth of 120kHz in the near-zero net dispersion regime.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. X. Yu, H. A. Haus, and W. S. Wong, Opt. Lett. 25, 1418 (2000).
    [CrossRef]
  2. K. S. Abedin, J. T. Gopinath, L. A. Jiang, M. E. Grein, H. A. Haus, and E. P. Ippen, Opt. Lett. 27, 1758 (2002).
    [CrossRef]
  3. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, Ph. Grelu, and F. Sanchez, Opt. Lett. 34, 2120 (2009).
    [CrossRef]
  4. S. Zhou, D. G. Ouzounov, and F. Wise, Opt. Lett. 31, 1041 (2006).
    [CrossRef]
  5. B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
    [CrossRef]
  6. A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 71, 053809 (2005).
    [CrossRef]
  7. C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
    [CrossRef]
  8. H. Zhou, W. Li, and H. Zeng, Laser Phys. 21, 399 (2011).
    [CrossRef]
  9. Q. Hao, W. Li, and H. Zeng, Opt. Express 17, 5815(2009).
    [CrossRef]
  10. M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, Opt. Lett. 37, 1511 (2012).
    [CrossRef]
  11. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
    [CrossRef]
  12. S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, J. Opt. Soc. Am. B 24, 1490 (2007).
    [CrossRef]
  13. L. Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, Opt. Lett. 36, 1578 (2011).
    [CrossRef]
  14. N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
    [CrossRef]

2012 (1)

2011 (2)

2009 (3)

2007 (1)

2006 (2)

S. Zhou, D. G. Ouzounov, and F. Wise, Opt. Lett. 31, 1041 (2006).
[CrossRef]

C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
[CrossRef]

2005 (3)

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 71, 053809 (2005).
[CrossRef]

N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
[CrossRef]

2002 (1)

2000 (1)

Abedin, K. S.

Amrani, F.

Bai, D.

Brunel, M.

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

Delfyett, P. J.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, J. Opt. Soc. Am. B 24, 1490 (2007).
[CrossRef]

Diddams, S. A.

Gee, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, J. Opt. Soc. Am. B 24, 1490 (2007).
[CrossRef]

Glandorf, L.

Gopinath, J. T.

Grein, M. E.

Grelu, Ph.

Haboucha, A.

Hao, Q.

Haus, H. A.

Hideur, A.

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

Ippen, E. P.

Jiang, L. A.

Johnson, T. A.

Kobayashi, Y.

Komarov, A.

Leblond, H.

Li, W.

Martel, G.

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

Newbury, N. R.

N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
[CrossRef]

Ortaç, B.

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

Ouzounov, D. G.

Ozharar, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, J. Opt. Soc. Am. B 24, 1490 (2007).
[CrossRef]

Palsdottir, B.

C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
[CrossRef]

Quinlan, F.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

S. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, J. Opt. Soc. Am. B 24, 1490 (2007).
[CrossRef]

Ru, Q.

Salhi, M.

Sanchez, F.

Shen, X.

Shi, Y.

C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
[CrossRef]

Thirstrup, C.

C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
[CrossRef]

Washburn, B. R.

N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
[CrossRef]

Wise, F.

Wong, W. S.

Yan, M.

Yang, K.

Yu, C. X.

Zeng, H.

Zhou, H.

Zhou, Q.

Zhou, S.

Appl. Phys. B (1)

B. Ortaç, A. Hideur, G. Martel, and M. Brunel, Appl. Phys. B 81, 507 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. R. Newbury and B. R. Washburn, IEEE J. Quantum Electron. 41, 1388 (2005).
[CrossRef]

J. Opt. A (1)

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, J. Opt. A 11, 103001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

H. Zhou, W. Li, and H. Zeng, Laser Phys. 21, 399 (2011).
[CrossRef]

Opt. Commun. (1)

C. Thirstrup, Y. Shi, and B. Palsdottir, Opt. Commun. 270, 407 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

A. Komarov, H. Leblond, and F. Sanchez, Phys. Rev. A 71, 053809 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Autocorrelation traces for (a) the fundamental-repetition-rate pulses, (b) the second and (c) third HML pulses, respectively, with their corresponding spectra (d), (e), and (f). These characteristics were measured under the same pump power of 240 mW. The blue squares represent the measured autocorrelation data at the fundamental repetition rate under a pump power of 150 mW. All the autocorrelation data are fitted by the hyperbolic secant curves (solid black curves).

Fig. 2.
Fig. 2.

Beat signals (a) at 17 MHz (linewidth 2.1MHz) for the fundamental mode locking, (b) at 6 MHz (linewidth 1.6MHz) for the second and (c) at 8 MHz (linewidth 1.4MHz) for the third HML Yb-doped fiber laser (RBW=100kHz). The data were obtained by 10 times trace average. The changes of the centers of CE offset frequency were probably due to the rearrangement of pump energy in the HML states and the change of the intracavity polarization state.

Fig. 3.
Fig. 3.

Dependence of CE offset frequency f0 linewidths of the HML fiber laser on the intracavity grating separation. The zero position represents a distance of 6.34 cm. For further tuning the grating separation, the harmonic pulses became unstable.

Fig. 4.
Fig. 4.

Free-running offset frequency linewidths of the HML fiber laser in the near-zero GVD regime for (a) fundamental repetition-rate mode locking, (b) the second HML and the third HML, respectively, with Lorentzian fits shown as black curves (RBW=30kHz).

Fig. 5.
Fig. 5.

Amplitude noise for the three mode-locking states. The black curve is the background noise of the photodetector.

Metrics