Abstract

The utilization of a simple focused optical cell to bring to light the competition between wideband stimulated Brillouin scattering (WSBS) and forward stimulated Raman scattering (FSRS) is investigated experimentally. A pulsed, wide bandwidth second-harmonic Nd:YAG laser is used as the pump source. We found that, the competition between WSBS and FSRS is an alternate process, which one dominated depends on the linewidth and energy of the pump laser, focal length, and optical breakdown.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Lett. 13, 334 (1964).
    [CrossRef]
  2. V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
    [CrossRef]
  3. A. Malarski and A. Leipertz, J. Raman Spectrosc. 39, 700 (2008).
    [CrossRef]
  4. J. Bai, J. Shi, M. Ouyang, X. Chen, W. Gong, H. Jing, J. Liu, and D. Liu, Opt. Lett. 33, 1539 (2008).
    [CrossRef]
  5. D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
    [CrossRef]
  6. D. C. Jones, M. S. Mangir, D. A. Rockwell, and J. O. White, J. Opt. Soc. Am. B 7, 2090 (1990).
    [CrossRef]
  7. G. C. Valley, IEEE J. Quantum Electron. 22, 704 (1986).
    [CrossRef]
  8. R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
    [CrossRef]
  9. J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
    [CrossRef]
  10. X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
    [CrossRef]
  11. A. Kummrow, J. Opt. Soc. Am. B 12, 1006 (1995).
    [CrossRef]
  12. W. L. Smith, Opt. Eng. 17, 489 (1978).
  13. D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
    [CrossRef]
  14. J. Shi, M. Ouyang, X. Chen, B. Liu, Y. Xu, H. Jing, and D. Liu, Opt. Lett. 34, 977 (2009).
    [CrossRef]

2011 (1)

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

2009 (2)

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
[CrossRef]

J. Shi, M. Ouyang, X. Chen, B. Liu, Y. Xu, H. Jing, and D. Liu, Opt. Lett. 34, 977 (2009).
[CrossRef]

2008 (2)

2005 (1)

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

2003 (1)

V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

1995 (1)

1990 (1)

1986 (1)

G. C. Valley, IEEE J. Quantum Electron. 22, 704 (1986).
[CrossRef]

1984 (1)

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

1978 (1)

W. L. Smith, Opt. Eng. 17, 489 (1978).

1969 (1)

D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
[CrossRef]

1964 (1)

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Lett. 13, 334 (1964).
[CrossRef]

Bai, J.

Brewer, R. G.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Lett. 13, 334 (1964).
[CrossRef]

Chen, X.

Fang, W.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

Fedosejevs, R.

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

Fragemann, A.

V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Gong, W.

He, X.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
[CrossRef]

Hua, X.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Jing, H.

Jones, D. C.

Kaiser, W.

D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
[CrossRef]

Kummrow, A.

Laurell, F.

V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Leipertz, A.

A. Malarski and A. Leipertz, J. Raman Spectrosc. 39, 700 (2008).
[CrossRef]

Leng, J.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Li, S.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

Liu, B.

Liu, D.

Liu, J.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
[CrossRef]

J. Bai, J. Shi, M. Ouyang, X. Chen, W. Gong, H. Jing, J. Liu, and D. Liu, Opt. Lett. 33, 1539 (2008).
[CrossRef]

Maier, M.

D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
[CrossRef]

Malarski, A.

A. Malarski and A. Leipertz, J. Raman Spectrosc. 39, 700 (2008).
[CrossRef]

Mangir, M. S.

McKen, D. C. D.

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

Offenberger, A. A.

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

Ouyang, M.

Pasiskevicius, V.

V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

Rieckhoff, K. E.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Lett. 13, 334 (1964).
[CrossRef]

Rockwell, D. A.

Sha, G.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Shi, J.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
[CrossRef]

J. Shi, M. Ouyang, X. Chen, B. Liu, Y. Xu, H. Jing, and D. Liu, Opt. Lett. 34, 977 (2009).
[CrossRef]

J. Bai, J. Shi, M. Ouyang, X. Chen, W. Gong, H. Jing, J. Liu, and D. Liu, Opt. Lett. 33, 1539 (2008).
[CrossRef]

Smith, W. L.

W. L. Smith, Opt. Eng. 17, 489 (1978).

Tomov, I. V.

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

Valley, G. C.

G. C. Valley, IEEE J. Quantum Electron. 22, 704 (1986).
[CrossRef]

von der Linde, D.

D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
[CrossRef]

White, J. O.

Xia, J.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

Xu, Y.

Yang, H.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Yang, K.

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

Zhang, C.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Appl. Phys. B (1)

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, Appl. Phys. B 81, 525 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

R. Fedosejevs, I. V. Tomov, D. C. D. McKen, and A. A. Offenberger, Appl. Phys. Lett. 45, 340 (1984).
[CrossRef]

V. Pasiskevicius, A. Fragemann, and F. Laurell, Appl. Phys. Lett. 82, 325 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Valley, IEEE J. Quantum Electron. 22, 704 (1986).
[CrossRef]

J. Opt. (1)

J. Shi, J. Liu, S. Li, J. Xia, J. Liu, W. Fang, K. Yang, and X. He, J. Opt. 13, 075201 (2011).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Raman Spectrosc. (1)

A. Malarski and A. Leipertz, J. Raman Spectrosc. 39, 700 (2008).
[CrossRef]

Opt. Eng. (1)

W. L. Smith, Opt. Eng. 17, 489 (1978).

Opt. Lett. (2)

Phys. Rev. (1)

D. von der Linde, M. Maier, and W. Kaiser, Phys. Rev. 178, 11 (1969).
[CrossRef]

Phys. Rev. A (1)

D. Liu, J. Shi, M. Ouyang, X. Chen, J. Liu, and X. He, Phys. Rev. A 80, 033808 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Lett. 13, 334 (1964).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental layout for measuring WSBS and FSRS. λ/4, λ/2, quarter-wave plate and half-wave plate, respectively; BS, polarizer; D0D3, detectors; M1, M2, 532 nm reflection mirrors; L1–L3, lenses; P, splitting prism.

Fig. 2.
Fig. 2.

Changes of WSBS and FSRS energies versus the change of pump laser energy when the laser is focused at 0.6 m in water.

Fig. 3.
Fig. 3.

Changes of WSBS and FSRS energies with the change of pump laser energy when the focal length is 1.0 m and 1.8 m, respectively.

Fig. 4.
Fig. 4.

The crossover energy of different focal lengths. “•” represents the measured data; “×” represents a hypothesis value at focal length of 0.6 m.

Fig. 5.
Fig. 5.

Optical breakdown and cavitation in water. The focal length=1.6m, and energy of pump light=0.25J. The length of spark of optical breakdown is about 6 cm.

Fig. 6.
Fig. 6.

Phase matching of the scattering process pumped by wideband laser. k⃗P, k⃗WSBS, k⃗FSRS, k⃗OP, and k⃗AP represent the wave vectors of the pump laser, WSBS, FSRS, optical phonon, and acoustic phonon, respectively. α and β are the scattering angles.

Fig. 7.
Fig. 7.

Time profile of WSBS and FSRS. Pump laser energy=0.3J, focused length=1.2m, and abscissa=5ns/div. Ordinate represents the relative intensity, only for reference.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pth=[2λln(rth/r0)]2/(PBgB2).

Metrics