Abstract

We demonstrate a new imaging method enabling a selective edge contrast enhancement of three-dimensional amplitude objects with spatially incoherent light. The imaging process is achieved in a spiral modification of Fresnel incoherent correlation holography and uses a vortex impulse response function. The correlation recordings of the object are acquired in a one-way interferometer with the wavefront division carried out by a spatial light modulator. Two different methods based on applying a helical reference wave in the hologram recording and a digital spiral phase modulation in image reconstruction are proposed for edge enhancement of amplitude objects. Results of both isotropic and anisotropic spiral imaging are demonstrated in experiments using an LED as an incoherent source of light.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, Opt. Lett. 25, 99 (2000).
    [CrossRef]
  2. A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
    [CrossRef]
  3. M. K. Sharma, J. Joseph, and P. Senthilkumaran, Appl. Opt. 50, 5279 (2011).
    [CrossRef]
  4. S. Bernet, A. Jesacher, S. Furhapter, Ch. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
    [CrossRef]
  5. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).
    [CrossRef]
  6. J. Rosen and G. Brooker, Opt. Lett. 32, 912 (2007).
    [CrossRef]
  7. P. Bouchal, J. Kapitán, R. Chmelík, and Z. Bouchal, Opt. Express 19, 15603 (2011).
    [CrossRef]
  8. B. Katz, J. Rosen, R. Kelner, and G. Brooker, Opt. Express 20, 9109 (2012).
    [CrossRef]
  9. X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

2012 (1)

2011 (3)

2007 (1)

2006 (1)

2005 (1)

A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

2000 (1)

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).
[CrossRef]

S. Bernet, A. Jesacher, S. Furhapter, Ch. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
[CrossRef]

A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Bouchal, P.

Bouchal, Z.

Brooker, G.

Campos, J.

Chmelík, R.

Cottrell, D. M.

Davis, J. A.

Furhapter, S.

S. Bernet, A. Jesacher, S. Furhapter, Ch. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
[CrossRef]

A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).
[CrossRef]

S. Bernet, A. Jesacher, S. Furhapter, Ch. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
[CrossRef]

A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Joseph, J.

Kapitán, J.

Katz, B.

Kelner, R.

Lai, X.

X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

Lv, X.

X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).
[CrossRef]

Maurer, Ch.

McNamara, D. E.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, Laser Photon. Rev. 5, 81 (2011).
[CrossRef]

S. Bernet, A. Jesacher, S. Furhapter, Ch. Maurer, and M. Ritsch-Marte, Opt. Express 14, 3792 (2006).
[CrossRef]

A. Jesacher, S. Furhapter, S. Bernet, and M. Ritsch-Marte, Phys. Rev. Lett. 94, 233902 (2005).
[CrossRef]

Rosen, J.

Senthilkumaran, P.

Sharma, M. K.

Zeng, S.

X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

Zhao, Y.

X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

Zhou, Z.

X. Lai, Y. Zhao, X. Lv, Z. Zhou, and S. Zeng, Opt. Lett.37, 2445 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Standard and spiral configurations for a correlation imaging with incoherent light.

Fig. 2.
Fig. 2.

Scheme of the experiment. SF, spectral filter; CL, collimating lens; D, diaphragm; P, polarizer; BS, beam splitter; SLM, spatial light modulator.

Fig. 3.
Fig. 3.

Demonstration of the standard and spiral imaging in the FINCH configuration. Images labeled DR and SM were obtained by the direct reconstruction and the digital spiral phase modulation, respectively.

Fig. 4.
Fig. 4.

Demonstration of isotropic and anisotropic edge contrast enhancement: (a) standard FINCH reconstruction, (b) isotropic spiral FINCH, (c)–(e) anisotropic spiral FINCH with preferred directions.

Fig. 5.
Fig. 5.

Needle placed some distance in front of a pinhole: (a) optical imaging, (b) spiral reconstruction with the needle in focus, and (c) spiral reconstruction numerically refocused on the pinhole. Images of a flea: (d) optical imaging, (e) standard FINCH, and (f) isotropic spiral reconstruction.

Metrics