Abstract

A pair of gold nanowires, incorporated into a photonic crystal fiber, acts as a plasmonic “molecule.” Hybridized modes are excited at specific wavelengths by launching light into the glass core. The formation of bonding and antibonding solutions results in a modal splitting of more than 100 nm, even though the spatial separation between the wires is larger than 3 μm. The study provides insight into multiwire plasmonic devices with applications as polarizers or filters in near-field optics, nonlinear plasmonics, optical sensing, and telecommunications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
    [CrossRef]
  2. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
    [CrossRef]
  3. V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
    [CrossRef]
  4. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
    [CrossRef]
  5. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
    [CrossRef]
  6. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
    [CrossRef]
  7. Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, Opt. Lett. 35, 3901 (2010).
    [CrossRef]
  8. A. Moradi, Phys. Plasmas 18, 064508 (2011).
    [CrossRef]
  9. A. Manjavacas and F. J. Garcia de Abajio, Nano Lett. 9, 1285 (2009).
    [CrossRef]
  10. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef]
  11. M. A. Schmidt and P. St. J. Russell, Opt. Express 16, 13617 (2008).
    [CrossRef]
  12. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, Opt. Express 19, 12180 (2011).
    [CrossRef]
  13. H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
    [CrossRef]
  14. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
    [CrossRef]
  15. J. W. Fleming, Appl. Opt. 23, 4486 (1984).
    [CrossRef]
  16. D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
    [CrossRef]
  17. G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
    [CrossRef]
  18. A. Hassani and M. Skorobogatiy, J. Opt. Soc. Am. B 26, 1550 (2009).
    [CrossRef]
  19. A. Nagasaki, K. Saitoh, and M. Koshiba, Opt. Express 19, 3799 (2011).
    [CrossRef]

2012 (1)

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

2011 (3)

2010 (4)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

Z. X. Zhang, M. L. Hu, K. T. Chan, and C. Y. Wang, Opt. Lett. 35, 3901 (2010).
[CrossRef]

2009 (3)

A. Hassani and M. Skorobogatiy, J. Opt. Soc. Am. B 26, 1550 (2009).
[CrossRef]

A. Manjavacas and F. J. Garcia de Abajio, Nano Lett. 9, 1285 (2009).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

2008 (2)

M. A. Schmidt and P. St. J. Russell, Opt. Express 16, 13617 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

2007 (2)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
[CrossRef]

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

2005 (1)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

1984 (1)

Brown, L. V.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

Chan, K. T.

Chiang, D. E.

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

de Abajio, F. J. Garcia

A. Manjavacas and F. J. Garcia de Abajio, Nano Lett. 9, 1285 (2009).
[CrossRef]

Demler, E. A.

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

Di Martino, G.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Dorpe, P. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
[CrossRef]

Fernández-Domínguez, A. I.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Fernández-García, R.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Fleming, J. W.

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Giannini, V.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Halas, N. J.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

Hao, F.

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Hassani, A.

Hu, M. L.

Joly, N. Y.

Kéna-Cohen, S.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Kim, M. S.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Koshiba, M.

Lassiter, J. B.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
[CrossRef]

Lee, H. W.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, Opt. Express 19, 12180 (2011).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Lukin, M. D.

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

Maier, S. A.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

Manjavacas, A.

A. Manjavacas and F. J. Garcia de Abajio, Nano Lett. 9, 1285 (2009).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Meyer, M.

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
[CrossRef]

Moradi, A.

A. Moradi, Phys. Plasmas 18, 064508 (2011).
[CrossRef]

Moshchalkov, V. V.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

Nagasaki, A.

Nordlander, P.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

Roschuk, T.

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Russell, P. St. J.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, Opt. Express 19, 12180 (2011).
[CrossRef]

M. A. Schmidt and P. St. J. Russell, Opt. Express 16, 13617 (2008).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

Russell, R. F.

S. K. Özdemir,

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Saitoh, K.

Schmidt, M. A.

Sempere, L. P.

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Skorobogatiy, M.

Sobhani, H.

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

Sonnefraud, Y.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

Sorensen, A. S.

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

Tame, M.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Tyagi, H. K.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, Opt. Express 19, 12180 (2011).
[CrossRef]

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

Uebel, P.

Vandenbosch, G. A. E.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

Verellen, N.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Wang, C. Y.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

Zhang, Z. X.

ACS Nano (2)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, ACS Nano 4, 1664 (2010).
[CrossRef]

F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
[CrossRef]

ACS Nano. (1)

L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, ACS Nano. 4, 819 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, and P. St. J. Russell, Appl. Phys. Lett. 93, 111102 (2008).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, Appl. Phys. Lett. 87, 261114 (2005).
[CrossRef]

J. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, and M. Meyer, J. Chem. Phys. 127, 189901 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (2)

A. Manjavacas and F. J. Garcia de Abajio, Nano Lett. 9, 1285 (2009).
[CrossRef]

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12, 2504 (2012).
[CrossRef]

Nat. Phys. (1)

D. E. Chiang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Plasmas (1)

A. Moradi, Phys. Plasmas 18, 064508 (2011).
[CrossRef]

Science (2)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
[CrossRef]

Small (1)

V. Giannini, A. I. Fernández-Domínguez, Y. Sonnefraud, T. Roschuk, R. Fernández-García, and S. A. Maier, Small 6, 2498 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) “Diatomic nanowire molecule” embedded in a photonic crystal fiber. The green arrow indicates the direction of the incident light. The right-hand scanning electron micrographs (SEMs) show samples with (b) a single nanowire and (c) two adjacent nanowires. The structural parameters are given in the text and the red circles indicate the positions of the nanowires.

Fig. 2.
Fig. 2.

Measured attenuation spectrum of the x- and y-polarized glass core mode in the double nanowire fiber. The polarization directions are defined in the right-hand inset. Top left-hand inset: measured attenuation spectrum for the single wire fiber. (A, 932.2 nm; B, 974.8 nm; C, 1015.9 nm; D, 1022.4 nm.)

Fig. 3.
Fig. 3.

(a) Calculated modal dispersion of the four coupled quadrupole modes of two adjacent nanowires embedded in an infinite hexagonal lattice of hollow channels (see inset). Both wires have the same diameter (1.02 μm). Solid and dashed curves correspond to bonding and antibonding states. The solid blue curve represents the effective index of the guided SPP mode on an isolated wire (W) in an infinite hexagonal lattice of hollow channels. In the grey (white) area, solutions correspond to antibonding (bonding) states. The black vertical line indicates the point at which the glass core mode matches to the wire modes. (b) Axial Poynting vector distributions of the four molecule-type modes of the double wire structure at the phase matching frequencies indicated in (a) (A, 974 nm; B, 984 nm; C, 993 nm; D, 997 nm). The arrows show a snapshot of the directions of the local instantaneous transverse electric fields.

Fig. 4.
Fig. 4.

(a) Simulated modal dispersion of the four hybridized modes of two adjacent nanowires with different diameters and air gaps embedded in an infinite hexagonal lattice of hollow channels. Small wire (SW, left wire) diameter and air-gap width: 1.02 μm and 3 nm; big wire (BW, right wire) diameter and air gap width: 1.05 μm and 1.5 nm. Solid and dashed curves refer to bonding and antibonding states. The violet curves correspond to the dispersion of guided SPP modes on isolated SWs and the BWs embedded in an infinite lattice of cladding holes. The blue curve marked W corresponds to the case when the wires are identical [see Fig. 3(a)], and the black arrows show the splitting in the case when they are dissimilar. (b) Axial Poynting vector distributions of the four molecule-like modes of the asymmetric double wire structure at the phase matching frequencies indicated in Fig. 4(a) (A, 955.5 nm; B, 963 nm; C, 1016 nm; D, 1016.5 nm).

Metrics