Abstract

A system composed of air holes in a dielectric host to form two square photonic crystals, with the same orientation and lattice constant but different scatterer radii, making an interface along their body diagonals, is numerically demonstrated to facilitate unidirectional light transmission. Band structure computations are carried out via the plane wave expansion method, whereas finite-difference time-domain simulations are carried out to investigate the transient behavior. Unidirectional light transmission is achieved over two adjacent stop bands along the ΓX direction, which are circumvented in the forward direction by scaling down the wave vector and rotating the surface normal. Contrast ratios as high as 0.9 are attained within the lower stop band.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription