Abstract

We propose a novel fiber Fabry–Perot interferometer (FPI) that incorporates a length of microfiber as its cavity and two fiber Bragg gratings (FBGs) as reflectors. The microfiber FPI is simply fabricated by flame-heated taper-drawing the central spot of an FBG into a section of microfiber. Ambient refractive index (RI) influences the effective index of microfiber, and thus the free spectrum range of the microfiber FPI, resulting in RI sensing. A dual-wavelength fiber laser based on the microfiber FPI is constructed, enabling radio frequency interrogation with high resolution. RI sensitivity of 911MHz/RIU is experimentally demonstrated for microfiber FPI with equivalent diameter of 1.455 μm. Simulation results indicate that the sensitivity can be further enhanced by reducing the diameter of the microfiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef]
  2. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef]
  3. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, Opt. Lett. 37, 67 (2012).
    [CrossRef]
  4. R. Liang, Q. Sun, J. Wo, and D. Liu, Opt. Commun. 285, 1128 (2012).
    [CrossRef]
  5. X. Fang, C. Liao, and D. Wang, Opt. Lett. 35, 1007 (2010).
    [CrossRef]
  6. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, Opt. Lett. 36, 3115 (2011).
    [CrossRef]
  7. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
    [CrossRef]
  8. C. Wuttke, M. Becker, S. Brückner, M. Rothhardt, and A. Rauschenbeutel, Opt. Lett. 37, 1949 (2012).
    [CrossRef]
  9. K. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. Miyazaki, and Y. Sugimoto, Opt. Express 19, 14040(2011).
    [CrossRef]
  10. Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
    [CrossRef]
  11. S. Pan and J. Yao, Opt. Express 17, 12167 (2009).
    [CrossRef]
  12. X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
    [CrossRef]
  13. J. Huang, X. Lan, T. Wei, Q. Han, Z. Gao, Z. Zhou, and H. Xiao, Opt. Lett. 37, 494 (2012).
    [CrossRef]
  14. L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Springer Verlag, 2010).
  15. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  16. M. Sumetsky, Y. Dulashko, J. Fini, A. Hale, and J. Nicholson, Opt. Lett. 31, 2393 (2006).
    [CrossRef]
  17. W. Ren, P. Tao, Z. Tan, Y. Liu, and S. Jian, Chin. Opt. Lett. 7, 775 (2009).
    [CrossRef]

2012

2011

2010

2009

2006

M. Sumetsky, Y. Dulashko, J. Fini, A. Hale, and J. Nicholson, Opt. Lett. 31, 2393 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

2005

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

1997

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Becker, M.

Brückner, S.

Chen, X.

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Cui, Y.

Deng, Z.

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Dulashko, Y.

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Fang, X.

Fini, J.

Gao, S.

Gao, Z.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Guan, B. O.

Hakuta, K.

Hale, A.

Han, Q.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Huang, J.

Jian, S.

Jin, L.

Kawai, Y.

Lan, X.

Le Kien, F.

Li, J.

Li, X.

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Liang, R.

Liao, C.

Liu, D.

R. Liang, Q. Sun, J. Wo, and D. Liu, Opt. Commun. 285, 1128 (2012).
[CrossRef]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, Opt. Lett. 37, 67 (2012).
[CrossRef]

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Liu, Y.

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Mansuripur, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Meng, C.

Miyazaki, H.

Nakajima, K.

Nayak, K.

Nicholson, J.

Pan, S.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Ran, Y.

Rauschenbeutel, A.

Ren, W.

Rothhardt, M.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Shum, P. P.

Sugimoto, Y.

Sumetsky, M.

M. Sumetsky, Y. Dulashko, J. Fini, A. Hale, and J. Nicholson, Opt. Lett. 31, 2393 (2006).
[CrossRef]

L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Springer Verlag, 2010).

Sun, L. P.

Sun, Q.

R. Liang, Q. Sun, J. Wo, and D. Liu, Opt. Commun. 285, 1128 (2012).
[CrossRef]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, Opt. Lett. 37, 67 (2012).
[CrossRef]

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Tan, Y. N.

Tan, Z.

Tao, P.

Tong, L.

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, Opt. Lett. 36, 3115 (2011).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Springer Verlag, 2010).

Wang, D.

Wang, G.

Wang, J.

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Wei, T.

Wo, J.

R. Liang, Q. Sun, J. Wo, and D. Liu, Opt. Commun. 285, 1128 (2012).
[CrossRef]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, Opt. Lett. 37, 67 (2012).
[CrossRef]

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Wuttke, C.

Xiao, H.

Xiao, Y.

Yao, J.

S. Pan and J. Yao, Opt. Express 17, 12167 (2009).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

Yu, H.

Zhang, A. P.

Zhou, Z.

Chin. Opt. Lett.

IEEE Trans. Microwave Theory Tech.

X. Chen, Z. Deng, and J. Yao, IEEE Trans. Microwave Theory Tech. 54, 804 (2006).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

Microwave Opt. Technol. Lett.

Q. Sun, J. Wang, J. Wo, X. Li, and D. Liu, Microwave Opt. Technol. Lett. 53, 2478 (2011).
[CrossRef]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef]

Opt. Commun.

R. Liang, Q. Sun, J. Wo, and D. Liu, Opt. Commun. 285, 1128 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. Tong and M. Sumetsky, Subwavelength and Nanometer Diameter Optical Fibers (Springer Verlag, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the microfiber FPI fabrication process.

Fig. 2.
Fig. 2.

Reflection spectra of microfiber FPI and uniform FBG3.

Fig. 3.
Fig. 3.

Experimental setup for RF domain interrogation of the RI sensor.

Fig. 4.
Fig. 4.

(a) Optical spectrum and (b) beat spectrum of the dual-wavelength fiber laser when the ambient RI is 1.3915.

Fig. 5.
Fig. 5.

Dependence of FSR of microfiber FPI, i.e., beat frequency of the dual-wavelength fiber laser, on ambient RI. Plotted in the figure include experimental results (red cross) and simulation results for different microfiber diameters (curves). In the simulation, the leff is set to be 20.2 mm and the lengths of FBG1 and FBG2 are 5.67 mm. The values are chosen in accordance with the physical dimension of microfiber FPI.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[a(z1)b(z1)]=[ejβL00ejβL]F2[t001/t][ej(ββ)l00ej(ββ)l]F1[a(z0)b(z0)],
FSR=c2ncore(leffl)+2neffl,

Metrics