Abstract

We first introduce optical compensation into the field of interferometric fiber-optic gyroscopes (IFOGs), using the opposite polarity of the disturbance between two orthogonal polarization states to suppress polarization-fluctuation-induced noise. A dual-polarized IFOG, in which the fast and slow axes of polarization-maintaining fiber work simultaneously, is implemented and tested. Interference signals of the two axes are added to achieve optical compensation. Experiments show that the IFOG’s sensitivity is effectively enhanced in compensated output: all Allan variance indices are improved, among which bias instability is reduced from 0.335 and 0.227deg/h (fast and slow axes output, respectively) to 0.061deg/h.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
    [CrossRef]
  2. F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
    [CrossRef]
  3. G. A. Pavlath, Proc. SPIE 2837, 46 (1996).
    [CrossRef]
  4. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 2, 91 (1984).
    [CrossRef]
  5. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981).
    [CrossRef]
  6. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 502 (1981).
    [CrossRef]
  7. B. Szafraniec and G. A. Sanders, J. Lightwave Technol. 17, 579 (1999).
    [CrossRef]
  8. Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
    [CrossRef]
  9. V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
    [CrossRef]
  10. I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002).
    [CrossRef]
  11. R. Ulrich, in Fiber-Optic Rotation Sensor and Related Technologies (Springer-Verlag, 1982), pp. 52–77.
  12. H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).
  13. G. Zhang, The Principles and Technologies of Fiber-Optic Gyroscope (National Defense Industry Press, 2008) (in Chinese).

2011

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

2008

V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
[CrossRef]

2002

I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002).
[CrossRef]

1999

1996

G. A. Pavlath, Proc. SPIE 2837, 46 (1996).
[CrossRef]

1986

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

1984

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

1981

1967

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Allan, D. W.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Andronova, I. A.

V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
[CrossRef]

I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002).
[CrossRef]

Bergh, R. A.

Gelikonov, G. V.

V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
[CrossRef]

Gelikonov, V. M.

V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
[CrossRef]

Jia, L.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Lefevre, H. C.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 502 (1981).
[CrossRef]

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, Opt. Lett. 6, 198 (1981).
[CrossRef]

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Li, Z.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Malykin, G. B.

I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002).
[CrossRef]

Pavlath, G. A.

G. A. Pavlath, Proc. SPIE 2837, 46 (1996).
[CrossRef]

Post, E. J.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Sanders, G. A.

Shao, S.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Shaw, H. J.

Szafraniec, B.

Ulrich, R.

R. Ulrich, in Fiber-Optic Rotation Sensor and Related Technologies (Springer-Verlag, 1982), pp. 52–77.

Walls, F. L.

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Wang, C.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Wang, Z.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Xu, L.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Yang, Y.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Yu, X.

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Zhang, G.

G. Zhang, The Principles and Technologies of Fiber-Optic Gyroscope (National Defense Industry Press, 2008) (in Chinese).

J. Lightwave Technol.

R. A. Bergh, H. C. Lefevre, and H. J. Shaw, J. Lightwave Technol. 2, 91 (1984).
[CrossRef]

B. Szafraniec and G. A. Sanders, J. Lightwave Technol. 17, 579 (1999).
[CrossRef]

Opt. Lett.

Phys. Usp.

I. A. Andronova and G. B. Malykin, Phys. Usp. 45, 793 (2002).
[CrossRef]

Proc. IEEE

F. L. Walls and D. W. Allan, Proc. IEEE 74, 162 (1986).
[CrossRef]

Proc. SPIE

G. A. Pavlath, Proc. SPIE 2837, 46 (1996).
[CrossRef]

Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li, Proc. SPIE 8191, 81910A (2011).
[CrossRef]

Radiophys. Quantum Electron.

V. M. Gelikonov, G. V. Gelikonov, and I. A. Andronova, Radiophys. Quantum Electron. 51, 296 (2008).
[CrossRef]

Rev. Mod. Phys.

E. J. Post, Rev. Mod. Phys. 39, 475 (1967).
[CrossRef]

Other

R. Ulrich, in Fiber-Optic Rotation Sensor and Related Technologies (Springer-Verlag, 1982), pp. 52–77.

H. C. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

G. Zhang, The Principles and Technologies of Fiber-Optic Gyroscope (National Defense Industry Press, 2008) (in Chinese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Orthogonal polarization states in Panda PMF.

Fig. 2.
Fig. 2.

Experimental setup.

Fig. 3.
Fig. 3.

Long-term output comparison.

Fig. 4.
Fig. 4.

Allan variance of long-term test.

Tables (1)

Tables Icon

Table 1. Allan Variance Indices

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ID=I0{1+cos[ϕs+Δϕ(t)]},
ID=I0{1+[J0(ϕm)+2(1)nJ2n(ϕm)cos(2nωm(tτ/2))]cos(ϕs)2(1)n+1J2n1(ϕm)cos[(2n1)ωm(tτ/2)]sin(ϕs)},
ϕ1=ϕs+ϕe++ϕe+ϕr1,ϕ2=ϕs+ϕe+ϕe+ϕr2,
I(ωm)=c1[I1sin(ϕ1)+I2sin(ϕ2)]=c1sin(ϕs+ϕΔ¯+ϕintensity),
ϕΔe=(ϕe1ϕe2)/2=ϕe+(ϕr1ϕr2)/2,
ϕΔ¯=(ϕe1+ϕe2)/2=ϕe++(ϕr1+ϕr2)/2,
ϕintensity=arctan(I1I2I1+I2tanϕΔe).
ϕe=arctanϵ2ρcrsinΔϕ121+ϵ2ρcrcosΔϕ12,
ϕe=arctanϵ(ρcrρin)1/2[sin(ϕ0+Δϕ12)sinϕ0]+ϵ2ρcrρinsinΔϕ121+ϵ(ρcrρin)1/2[cos(ϕ0+Δϕ12)+cosϕ0]+ϵ2ρcrρincosΔϕ12,

Metrics