Abstract

Maximization of a projected laser beam’s power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field’s statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam’s wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).
  2. P. Merritt, Beam Control for Laser Systems (DEPS, 2011).
  3. T. R. O’Meara, J. Opt. Soc. Am. 67, 306 (1977).
    [CrossRef]
  4. M. Vorontsov, V. Kolosov, and A. Kohnle, J. Opt. Soc. Am. A 24, 1975 (2007).
    [CrossRef]
  5. J. Pearson, S. Kokorowski, and M. Pedinoff, J. Opt. Soc. Am. 66, 1261 (1976).
    [CrossRef]
  6. M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
    [CrossRef]
  7. P. Piatrou and M. Roggemann, Appl. Opt. 46, 6831 (2007).
    [CrossRef]
  8. M. Vorontsov, Target in the Loop Propagation in Random Media (FGAN FOM, 2004).
  9. M. Vorontsov and G. Carhart, Opt. Lett. 27, 2155 (2002).
    [CrossRef]
  10. J.R. Leger, J. Nilsson, J.P. Huignard, A. Napartovich, T.M. Shay, and A. Shirakawa, eds., IEEE J. Sel. Top. Quantum Electron. 15, 237 (2009).
    [CrossRef]
  11. M. Vorontsov, V. Kolosov, and E. Polnau, Appl. Opt. 48, A13 (2009).
    [CrossRef]
  12. M. Vorontsov, G. Carhart, and J. Ricklin, Opt. Lett. 22, 907 (1997).
    [CrossRef]
  13. R. Muller and A. Buffington, J. Opt. Soc. Am. 64, 1200 (1974).
    [CrossRef]
  14. V. Dudorov, M. Vorontsov, and V. Kolosov, J. Opt. Soc. Am. A 23, 1924 (2006).
    [CrossRef]
  15. T. Weyrauch, M. Vorontsov, G. Carhart, L. Beresnev, A. Rostov, E. Polnau, and J. Liu, Opt. Lett. 36, 4455 (2011).
    [CrossRef]
  16. Optonicus, http://www.optonicus.com .

2011

2009

J.R. Leger, J. Nilsson, J.P. Huignard, A. Napartovich, T.M. Shay, and A. Shirakawa, eds., IEEE J. Sel. Top. Quantum Electron. 15, 237 (2009).
[CrossRef]

M. Vorontsov, V. Kolosov, and E. Polnau, Appl. Opt. 48, A13 (2009).
[CrossRef]

2007

2006

2002

1997

1984

M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
[CrossRef]

1977

1976

1974

Beresnev, L.

Buffington, A.

Carhart, G.

Cusumano, S.

G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).

Dudorov, V.

Fiorino, S.

G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).

Hengehold, R.

G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).

Karnaukhov, V.

M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
[CrossRef]

Kohnle, A.

Kokorowski, S.

Kolosov, V.

Kuz’minskii, A.

M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
[CrossRef]

Liu, J.

Merritt, P.

P. Merritt, Beam Control for Laser Systems (DEPS, 2011).

Muller, R.

O’Meara, T. R.

Pearson, J.

Pedinoff, M.

Perram, G.

G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).

Piatrou, P.

Polnau, E.

Ricklin, J.

Roggemann, M.

Rostov, A.

Shmal’gauzen, V.

M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
[CrossRef]

Vorontsov, M.

Weyrauch, T.

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

J.R. Leger, J. Nilsson, J.P. Huignard, A. Napartovich, T.M. Shay, and A. Shirakawa, eds., IEEE J. Sel. Top. Quantum Electron. 15, 237 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Lett.

Sov. J. Quantum Electron.

M. Vorontsov, V. Karnaukhov, A. Kuz’minskii, and V. Shmal’gauzen, Sov. J. Quantum Electron. 14, 761 (1984).
[CrossRef]

Other

M. Vorontsov, Target in the Loop Propagation in Random Media (FGAN FOM, 2004).

G. Perram, S. Cusumano, R. Hengehold, and S. Fiorino, An Introduction to Laser Weapon Systems (DEPS, 2010).

P. Merritt, Beam Control for Laser Systems (DEPS, 2011).

Optonicus, http://www.optonicus.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Laser beam projection systems with SM AO: (a) fiber-array-based and (c) conventional with fiber-array-based target illuminator (shown inside dashed frame). (b) Depiction of stair-mode tilt approximation.

Fig. 2.
Fig. 2.

Intensity patterns at the target surface: (a) no phase control; (b) SPGD phase control using the PIB metric; (c) uncontrolled phase with stair-mode beam dithering on; and (d) SPGD phase control with SM and dithering.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τspτJτAOτat.
ΓPIB(τ)=CIT(r)IT(r+vSτ)d2r,
σPIB2=ΓPIB(0)=δJPIB2=CIT2(r)d2r.
Jsp=j=1NβjP(ωj,Δj)=j=1NβjωjΔj/2ωj+Δj/2GPIB(ω)dω,

Metrics