Abstract

We demonstrate experimentally and numerically the operation of a self-pulsating fiber laser based on the cascaded effects of soliton self-frequency shift and self-phase modulation spectral broadening. The combination of those two effects triggers and sustains the propagation of picosecond pulses in the cavity. At one of the outputs, the laser emits a supercontinuum with spectral width in excess of 150 nm at the repetition rate of 95 kHz.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Pitois, C. Finot, and L. Provost, Opt. Lett. 32, 3263 (2007).
    [CrossRef]
  2. M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
    [CrossRef]
  3. K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
    [CrossRef]
  4. S. Pitois, C. Finot, L. Provost, and D. Richardson, J. Opt. Soc. Am. B 25, 1537 (2008).
    [CrossRef]
  5. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
    [CrossRef]
  6. J. Price, K. Furusawa, T. Monro, L. Lefort, and D. Richardson, J. Opt. Soc. Am. B 19, 1286 (2002).
    [CrossRef]
  7. D. Kielpinski, M. Pullen, J. Canning, M. Stevenson, P. Westbrook, and K. Feder, Opt. Express 17, 20833 (2009).
    [CrossRef]
  8. M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
    [CrossRef]
  9. A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
    [CrossRef]
  10. S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef]
  11. J. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef]
  12. P. Mamyshev, in Proceedings of the 24th European Conference on Optical Communication, (IEEE, 1998), Vol. 1, pp. 475–476.
  13. K. Tai, A. Hasegawa, and N. Bekki, Opt. Lett. 13, 392 (1988).
    [CrossRef]

2009

2008

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

S. Pitois, C. Finot, L. Provost, and D. Richardson, J. Opt. Soc. Am. B 25, 1537 (2008).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

2007

2002

2000

M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
[CrossRef]

1997

S. Chernikov, Y. Zhu, J. Taylor, and V. Gapontsev, Opt. Lett. 22, 298 (1997).
[CrossRef]

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

1988

1986

Anzueto-Sanchez, G.

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

Bekki, N.

Canning, J.

Chen, L. R.

K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Chernikov, S.

Feder, K.

Finot, C.

Furusawa, K.

Gapontsev, V.

Gordon, J.

Hasegawa, A.

Haus, H.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Hernandez-Cordero, J.

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Ippen, E.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Jones, D.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Kielpinski, D.

Kim, N.

M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
[CrossRef]

Lefort, L.

Mamyshev, P.

P. Mamyshev, in Proceedings of the 24th European Conference on Optical Communication, (IEEE, 1998), Vol. 1, pp. 475–476.

Martinez-Rios, A.

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

Monro, T.

Nelson, L.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Pitois, S.

Prabhu, M.

M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
[CrossRef]

Price, J.

Provost, L.

Pullen, M.

Richardson, D.

Rochette, M.

K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Selvas-Aguilar, R.

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

Stevenson, M.

Sun, K.

K. Sun, M. Rochette, and L. R. Chen, Opt. Express 17, 10419 (2009).
[CrossRef]

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

Tai, K.

Tamura, K.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Taylor, J.

Torres-Gómez, I.

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

Ueda, K.

M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
[CrossRef]

Westbrook, P.

Zhu, Y.

Appl. Phys. B

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Rochette, L. R. Chen, K. Sun, and J. Hernandez-Cordero, IEEE Photon. Technol. Lett. 20, 1497 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

M. Prabhu, N. Kim, and K. Ueda, Jpn. J. Appl. Phys. 39, L291 (2000).
[CrossRef]

Opt. Commun.

A. Martinez-Rios, I. Torres-Gómez, G. Anzueto-Sanchez, and R. Selvas-Aguilar, Opt. Commun. 281, 663 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. Mamyshev, in Proceedings of the 24th European Conference on Optical Communication, (IEEE, 1998), Vol. 1, pp. 475–476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic of the experimental setup. (b), (c) Spectra representing the pulse before (dashed line) and after (solid line) propagation in each HNLF. OC, optical circulator; OSA, optical spectrum analyzer; HNLF, highly nonlinear fiber; EDFA, erbium-doped fiber amplifier; BPF, bandpass filter; FBG, fiber Bragg grating; BW, bandwidth; PD, photodiode; SMF, single-mode fiber; PSD, power spectral density.

Fig. 2.
Fig. 2.

(a), (b) Spectra from outputs C1, C2, and C3; (c) observed from C2, oscilloscope trace showing the repetition rate and burst structure of the output signal; (d) observed from C2 and C3, oscilloscope trace zooming on one burst and revealing a structure that comprises several pulses. Inset (e) frequency-resolved optical gating spectrogram at C2.

Fig. 3.
Fig. 3.

Numerical simulations for the setup of Fig. 1. (a) Fundamental solitons after HNLF2. (b) Zoom on the output soliton (k). (c) Spectrum obtained by an averaging of 50 round trips of the cavity, starting at round trip 10. The dashed and solid curves correspond to the input and the output of HNLF2, respectively.

Fig. 4.
Fig. 4.

Soliton fission in the time domain and propagation of the resulting fundamental solitons in the first 300 m of HNLF2.

Fig. 5.
Fig. 5.

Pulses with an initial temporal width and peak power are launched in HNLF2. (top) Their final peak power is represented after filtering at the BPF. (bottom) The transmittance at the filter is shown. For reference, solid lines indicate the corresponding soliton order.

Metrics