Abstract

We present a new configuration for superresolution (SR) as well as for field-of-view (FOV) extension in a digital holography concept based on random movement of sparse metallic particles. In the SR configuration, the particles are in proximity to the recorded object, while in the FOV configuration, the particles are in proximity to the hologram plane. The particles’ movement encodes the high spatial features in the plane of their movement. This high-resolution information can later be decoded by proper numerical postprocessing that either remedies the resolution limitations in the object plane (or the limited NA of the lens) or extends the FOV in the object plane.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).
  2. F. Le Clerc, M. Gross, and L. Collot, Opt. Lett. 26, 1550 (2001).
    [CrossRef]
  3. V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
    [CrossRef]
  4. M. Paturzo and P. Ferraro, Opt. Lett. 34, 3650 (2009).
    [CrossRef]
  5. L. Granero, V. Micó, Z. Zalevsky, and J. García, Opt. Express 17, 15008 (2009).
    [CrossRef]
  6. C. Yuan, H. Zhai, and H. Liu, Opt. Lett. 33, 2356 (2008).
    [CrossRef]
  7. V. Micó and Z. Zalevsky, J. Biomed. Opt. 15, 046027 (2010).
    [CrossRef]
  8. L. Granero, V. Micó, Z. Zalevsky, and J. García, Appl. Opt. 49, 845 (2010).
    [CrossRef]
  9. V. Micó, C. Ferreira, and J. García, Opt. Express 20, 9382 (2012).
    [CrossRef]
  10. A. Gur, D. Fixler, V. Micó, J. Garcia, and Z. Zalevsky, Opt. Express 18, 22222 (2010).
    [CrossRef]
  11. B. B. Chaudhuri and B. U. Shankar, Pattern Recogn. Lett. 10, 81 (1989).
    [CrossRef]

2012

2010

2009

2008

2001

1989

B. B. Chaudhuri and B. U. Shankar, Pattern Recogn. Lett. 10, 81 (1989).
[CrossRef]

Chaudhuri, B. B.

B. B. Chaudhuri and B. U. Shankar, Pattern Recogn. Lett. 10, 81 (1989).
[CrossRef]

Collot, L.

Ferraro, P.

Ferreira, C.

Fixler, D.

Garcia, J.

García, J.

Granero, L.

Gross, M.

Gur, A.

Le Clerc, F.

Liu, H.

Micó, V.

Paturzo, M.

Shankar, B. U.

B. B. Chaudhuri and B. U. Shankar, Pattern Recogn. Lett. 10, 81 (1989).
[CrossRef]

Yaroslavsky, L. P.

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

Yuan, C.

Zalevsky, Z.

Zhai, H.

Appl. Opt.

J. Biomed. Opt.

V. Micó and Z. Zalevsky, J. Biomed. Opt. 15, 046027 (2010).
[CrossRef]

J. Opt. A

V. Micó, L. Granero, Z. Zalevsky, and J. García, J. Opt. A 11, 125408 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Pattern Recogn. Lett.

B. B. Chaudhuri and B. U. Shankar, Pattern Recogn. Lett. 10, 81 (1989).
[CrossRef]

Other

L. P. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic sketch of the proposed optical configuration for SR DH setup.

Fig. 2.
Fig. 2.

Numerical simulations for a binary amplitude resolution target (upper row), Lena image (central row), and phase resolution target (lower row). Left column includes the original high-resolution object, while the reconstructions via the DH with small D and the SR DH using moving particles are included in the central and right columns, respectively.

Fig. 3.
Fig. 3.

Numerical simulations for the FOV DH reconstruction: (a) without and (b) with use of moving particles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H(x2,t)=|(δ(x1Δx)+s(x1)g(x1,t))exp(2πix1x2λF)dx1|2rect(x2D),
T(x2)=(exp(2πiΔxx2λF)s(x1)g(x1,t)exp(2πix1x2λF)dx1)rect(x2D).
R(x3)=((s(x3Δx)g(x3Δx,t))(Dsinc(x3λFD)))g(x3Δx,t)dt,
g(xΔx,t)g(x3Δx,t)dtκ+δ(xx3),
R(x3)Dκs(xΔx)sinc(D(x3x)/λF)dx+Δxs(x3Δx),
T(x2)=((exp(2πiΔxx2λF)s(x1)exp(2πix1x2λF)dx1)g(x2,t))p(x2),
R(x3)=((s(x3Δx)G(x3λF,t))P(x3λF))G(x3λF,t)dt,
G(x4/λF,t)G(x3x3/λF,t)dt=δ(x4x3+x3)+κ,
R(x3)=s(x3Δx)(p(x3/λF)dx3)+κη1η2,

Metrics