Abstract

This work presents a novel method to form polycrystalline Cu(In1xGax)Se2 (CIGS) thin film by co-sputtering of InSe and CuGa alloy targets without an additional selenization process. An attempt was also made to thoroughly elucidate the surface morphology, crystalline phases, physical properties, and chemical properties of the CIGS films by using material analysis methods. Experimental results indicate that CIGS thin films featured densely packed grains and chalcopyrite phase peaks of (112), (220), (204), (312), and (116). Raman spectroscopy analysis revealed chalcopyrite CIGS phase with Raman shift at 175cm1, while no signal at 258  cm1 indicated the exclusion of Cu2xSe phase. Hall effect measurements confirmed the polycrystalline Cu(In,Ga)Se2 thin film to be of p type semiconductor with a film resistivity and mobility of 2.19×102Ωcm and 88cm2/Vs, respectively.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
    [CrossRef]
  2. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
    [CrossRef]
  3. M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
    [CrossRef]
  4. D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
    [CrossRef]
  5. A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 47410 (2005).
    [CrossRef]
  6. C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
    [CrossRef]
  7. J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
    [CrossRef]
  8. R. Gay, in Proceedings of the 12th European Photovoltaic Solar Energy Conference (1994), p. 935.
  9. F. B. Dejene, Sol. Energy Mater. Sol. Cells 93, 577 (2009).
    [CrossRef]
  10. Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
    [CrossRef]
  11. A. M. Hermann and C. Gonzalez, Sol. Energy Mater. Sol. Cells 70, 345 (2001).
    [CrossRef]
  12. M. Grossberg and L. Kaupmees, Sol. Energy Mater. Sol. Cells 93, 11 (2009).
    [CrossRef]
  13. O. A. Balitskii and V. P. Savchyn, Semicond. Sci. Technol. 17, L1 (2002).
    [CrossRef]
  14. W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
    [CrossRef]
  15. M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
    [CrossRef]

2011 (3)

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

2009 (2)

F. B. Dejene, Sol. Energy Mater. Sol. Cells 93, 577 (2009).
[CrossRef]

M. Grossberg and L. Kaupmees, Sol. Energy Mater. Sol. Cells 93, 11 (2009).
[CrossRef]

2008 (2)

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

2006 (1)

M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
[CrossRef]

2005 (1)

A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 47410 (2005).
[CrossRef]

2003 (1)

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

2002 (1)

O. A. Balitskii and V. P. Savchyn, Semicond. Sci. Technol. 17, L1 (2002).
[CrossRef]

2001 (1)

A. M. Hermann and C. Gonzalez, Sol. Energy Mater. Sol. Cells 70, 345 (2001).
[CrossRef]

1994 (2)

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Ahn, S.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Albin, D. S.

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

Balitskii, O. A.

O. A. Balitskii and V. P. Savchyn, Semicond. Sci. Technol. 17, L1 (2002).
[CrossRef]

Bhattacharya, R. N.

A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 47410 (2005).
[CrossRef]

Chang, J. C.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Cho, A.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Choi, B. H.

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Chuang, C. C.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
[CrossRef]

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

DeHart, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Dejene, F. B.

F. B. Dejene, Sol. Energy Mater. Sol. Cells 93, 577 (2009).
[CrossRef]

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Fernandez, A. M.

A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 47410 (2005).
[CrossRef]

Gabor, A. M.

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

Gay, R.

R. Gay, in Proceedings of the 12th European Photovoltaic Solar Energy Conference (1994), p. 935.

Gonzalez, C.

A. M. Hermann and C. Gonzalez, Sol. Energy Mater. Sol. Cells 70, 345 (2001).
[CrossRef]

Grossberg, M.

M. Grossberg and L. Kaupmees, Sol. Energy Mater. Sol. Cells 93, 11 (2009).
[CrossRef]

Guo, J. W.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Gwak, J.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Hermann, A. M.

A. M. Hermann and C. Gonzalez, Sol. Energy Mater. Sol. Cells 70, 345 (2001).
[CrossRef]

Ho, W. H.

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

Hsieh, T. P.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Hsu, H. R.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Hsu, S. C.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Kaelin, M.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

Kaupmees, L.

M. Grossberg and L. Kaupmees, Sol. Energy Mater. Sol. Cells 93, 11 (2009).
[CrossRef]

Kim, H. J.

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Kim, Y. J.

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Kniese, R.

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

Kurdesaua, F.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

Kwon, S.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Lee, H. D.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Lee, K. K.

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Lee, Y. E.

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Liang, S. C.

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

Lin, H. C.

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

Meyer, T.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

Moon, D. G.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Nieh, C. Y.

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
[CrossRef]

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

Pak, H.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Perkins, C.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Powalla, M.

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Romero, M. J.

M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
[CrossRef]

Rudmanna, D.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

Savchyn, V. P.

O. A. Balitskii and V. P. Savchyn, Semicond. Sci. Technol. 17, L1 (2002).
[CrossRef]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Shin, K.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Su, C. Y.

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

Tiwari, A. N.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Tuttle, J. R.

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

Witte, W.

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

Wu, C. S.

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Yoon, K.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Yun, J. H.

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Zogga, H.

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, and R. Noufi, Appl. Phys. Lett. 65198 (1994).
[CrossRef]

J. Electrochem. Soc. (1)

Y. E. Lee, H. J. Kim, Y. J. Kim, K. K. Lee, and B. H. Choi, J. Electrochem. Soc. 141, 558 (1994).
[CrossRef]

Nanosc. Nanotechnol. Lett. (1)

J. C. Chang, C. C. Chuang, J. W. Guo, S. C. Hsu, H. R. Hsu, C. S. Wu, and T. P. Hsieh, Nanosc. Nanotechnol. Lett. 3, 200 (2011).
[CrossRef]

Prog. Photovoltaics (1)

I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. Perkins, B. To, and R. Noufi, Prog. Photovoltaics 16, 235 (2008).
[CrossRef]

Semicond. Sci. Technol. (1)

O. A. Balitskii and V. P. Savchyn, Semicond. Sci. Technol. 17, L1 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (5)

A. M. Hermann and C. Gonzalez, Sol. Energy Mater. Sol. Cells 70, 345 (2001).
[CrossRef]

M. Grossberg and L. Kaupmees, Sol. Energy Mater. Sol. Cells 93, 11 (2009).
[CrossRef]

F. B. Dejene, Sol. Energy Mater. Sol. Cells 93, 577 (2009).
[CrossRef]

C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).
[CrossRef]

D. G. Moon, S. Ahn, J. H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H. D. Lee, H. Pak, and S. Kwon, Sol. Energy Mater. Sol. Cells 952786 (2011).
[CrossRef]

Thin Solid Films (4)

A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 47410 (2005).
[CrossRef]

M. Kaelin, D. Rudmanna, F. Kurdesaua, T. Meyer, H. Zogga, and A. N. Tiwari, Thin Solid Films 43158 (2003).
[CrossRef]

W. Witte, R. Kniese, M. Powalla, W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).
[CrossRef]

M. A. Contreras, M. J. Romero, and R. Noufi, Thin Solid Films 511, 51 (2006).
[CrossRef]

Other (1)

R. Gay, in Proceedings of the 12th European Photovoltaic Solar Energy Conference (1994), p. 935.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM images of the CIGS films as-deposited with different working pressures: (a) 8 mTorr, (b) 10 mTorr; (c) 12 mTorr.

Fig. 2.
Fig. 2.

Energy dispersive spectrometer (EDS) composition analysis of annealed CIGS films with different working pressures: (a) 8 mTorr, (b) 10 mTorr; (c) 12 mTorr.

Fig. 3.
Fig. 3.

XRD patterns of the annealed CuInGaSe precursor films deposited at various working pressure (a) 8 mTorr, (b) 10 mTorr; (c) 12 mTorr.

Fig. 4.
Fig. 4.

Raman scans of two-stage annealed CIGS thin films for working pressures of 8 mTorr.

Fig. 5.
Fig. 5.

Photocurrent voltage (I-V) characteristic of the fabricated CIGS solar cell.

Fig. 6.
Fig. 6.

External quantum efficiency of the CIGS solar cell.

Tables (1)

Tables Icon

Table 1. Sputtering Parameters and Hall Measurement Results of the Annealed CIGS Films Prepared with Different Working Pressures

Metrics