Abstract

Spectral broadening in silicon waveguides is usually inhibited at telecom wavelengths due to some adverse effects related to semiconductor dynamics, namely, two-photon and free-carrier absorption (FCA). In this Letter, our numerical simulations show that it is possible to achieve a significant enhancement in spectral broadening when we properly preshape the input pulse to reduce the impact of FCA on spectral broadening. Our analysis suggests that the use of input pulses with the correct skewness and power level is crucial for this achievement.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali, and S. Fathpour, J. Lightwave Technol. 24, 4600 (2006).
    [CrossRef]
  2. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, Opt. Express 18, 1904 (2010).
    [CrossRef]
  3. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, Opt. Express 19, 8102 (2011).
    [CrossRef]
  4. J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).
    [CrossRef]
  5. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
    [CrossRef]
  6. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007).
    [CrossRef]
  7. R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, Adv. Opt. Photon. 1, 162 (2009).
    [CrossRef]
  8. E. Dulkeith, Y. A. Vlasov, X. Cheng, N. C. Panoiu, and R. M. Osgood, Opt. Express 14, 5524 (2006).
    [CrossRef]
  9. L. Yin and G. P. Agrawal, Opt. Lett. 32, 2031 (2007).
    [CrossRef]
  10. P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
    [CrossRef]
  11. S. Xu, D. H. Reitze, and R. S. Windeler, Opt. Express 12, 4731 (2004).
    [CrossRef]
  12. D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
    [CrossRef]
  13. F. G. Omenetto, A. J. Taylor, M. D. Moores, and D. H. Reitze, Opt. Lett. 26, 938 (2001).
    [CrossRef]
  14. D. Schumacher, Opt. Lett. 27, 451 (2002).
    [CrossRef]
  15. X. Yang, D. J. Richardson, and P. Petropoulos, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), CI2_1.
  16. C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
    [CrossRef]
  17. A. Rundquist, A. Efimov, and D. H. Reitze, J. Opt. Soc. Am. B 19, 2468 (2002).
    [CrossRef]

2011

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, Opt. Express 19, 8102 (2011).
[CrossRef]

C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

2010

2009

2008

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

2007

2006

2004

2002

2001

Agrawal, G. P.

Ament, C.

C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

Beausoleil, R. G.

Boyraz, Ö.

Chen, X.

Cheng, X.

Dadap, J. I.

Dulkeith, E.

Efimov, A.

Fathpour, S.

Foster, M. A.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).
[CrossRef]

Gaeta, A. L.

Green, W. M.

Hsieh, I.-W

Jalali, B.

Koonath, P.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, Opt. Express 12, 4094 (2004).
[CrossRef]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).
[CrossRef]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).
[CrossRef]

Levis, R. J.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
[CrossRef]

Lin, Q.

Lipson, M.

Liu, X.

Lorenc, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
[CrossRef]

Markevitch, A. N.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
[CrossRef]

Moloney, J. V.

C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

Moores, M. D.

Omenetto, F. G.

Osgood, R. M.

Painter, O. J.

Panoiu, N. C.

Petropoulos, P.

X. Yang, D. J. Richardson, and P. Petropoulos, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), CI2_1.

Polynkin, P.

C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

Raghunathan, V.

Reitze, D. H.

Richardson, D. J.

X. Yang, D. J. Richardson, and P. Petropoulos, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), CI2_1.

Rundquist, A.

Salem, R.

Schumacher, D.

Solli, D. R.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

Taylor, A. J.

Turner-Foster, A. C.

Velic, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
[CrossRef]

Vlasov, Y. A.

Willner, A. E.

Windeler, R. S.

Xu, S.

Yang, X.

X. Yang, D. J. Richardson, and P. Petropoulos, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), CI2_1.

Yin, L.

Yue, Y.

Zhang, L.

Adv. Opt. Photon.

Appl. Phys. Lett.

P. Koonath, D. R. Solli, and B. Jalali, Appl. Phys. Lett. 93, 091114 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photon.

J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).
[CrossRef]

Opt. Commun.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, Opt. Commun. 276, 288 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

C. Ament, P. Polynkin, and J. V. Moloney, Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

Other

X. Yang, D. J. Richardson, and P. Petropoulos, in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), CI2_1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Spectral output width at 20dB as a function of the strength η of the cubic-phase modulation for three input peak powers: 10 W (short-dashed curve), 100 W (dotted–dashed curve), and 1 kW (solid curve). The long-dashed curve corresponds to the input spectral phase provided by the Gerchberg–Saxton (GS) algorithm (see details in the text).

Fig. 2.
Fig. 2.

Comparison of the output power spectrum between the unmodulated Gaussian input pulse (dashed curve) and the spectrally chirped version (solid curve) for (a) P0=100W, η=125ps3 and (b) P0=1kW, η=124ps3.

Fig. 3.
Fig. 3.

(a) Density of carriers at the maximum of the output pulse in terms of η; (b) input pulses; (c) output pulses. In both plots (b) and (c), dashed curves correspond to pulses resulting from the cubic-phase modulation and solid curves refer to pulses resulting from the GS algorithm. In all cases, η=200ps3 and P0=1kW. (d) Secondary lobes of the modulated pulses of (b) and (c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

zA+iβ22t2A=iγ0(1+ir)|A|2Aσ2(1+iμ)NcAαl2A,
Nc(z,t)=βTPA2hν0Aeff2tettτc|A(z,t)|4dt,
z(tϕ)=γ0t|A|2+σμ2(βTPA2hν0Aeff2|A|4Ncτc),
|A|2=exp(0zαeffdz)A021+2γ0rzeffA02,

Metrics