Abstract

Acousto-optic imaging is based on light interaction with focused ultrasound in a scattering medium. Thanks to photorefractive holography combined with pulsed ultrasound, we perform a time-resolved detection of ultrasound-modulated photons in the therapeutic window (780 nm). A high-gain SPS:Te crystal is used for this purpose and enables us to image through large optical thickness (500 mean free paths). We are able to generate three-dimensional (3D) acousto-optic images by translating a multielement ultrasound probe in only one direction. A 3D absorbing object is imaged through a 3 cm thick phantom.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
    [CrossRef]
  2. R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
    [CrossRef]
  3. S. Leveque-Fort, Appl. Opt. 40, 1029 (2001).
    [CrossRef]
  4. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, and C. A. Di Marzio, Opt. Lett. 29, 2509 (2004).
    [CrossRef]
  5. F. Ramaz, B. C. Forget, M. Atlan, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, Opt. Express 12, 5469 (2004).
    [CrossRef]
  6. T. Bach, M. Jazbinsek, G. Montemezzani, P. Gunter, A. A. Grabar, and Y. M. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
    [CrossRef]
  7. S. Farahi, G. Montemezzani, A. A. Grabar, J. P. Huignard, and F. Ramaz, Opt. Lett. 35, 1798 (2010).
    [CrossRef]
  8. Y. H. Hong, P. Xie, J. H. Dai, Y. Zhu, H. G. Yang, and H. J. Zhang, Opt. Lett. 18, 772 (1993).
    [CrossRef]
  9. I. de Oliveira and J. Frejlich, Phys. Rev. A 64, 033806 (2001).
    [CrossRef]
  10. P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
    [CrossRef]

2011 (2)

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

2010 (1)

2007 (1)

2004 (2)

2001 (2)

S. Leveque-Fort, Appl. Opt. 40, 1029 (2001).
[CrossRef]

I. de Oliveira and J. Frejlich, Phys. Rev. A 64, 033806 (2001).
[CrossRef]

1995 (1)

P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
[CrossRef]

1993 (1)

Atlan, M.

Bach, T.

Blonigen, F.

Boccara, A. C.

Dai, J. H.

de Montmorillon, L.-A.

P. Delaye, L.-A. de Montmorillon, and G. Roosen, Opt. Commun. 118, 154 (1995).
[CrossRef]

de Oliveira, I.

I. de Oliveira and J. Frejlich, Phys. Rev. A 64, 033806 (2001).
[CrossRef]

Delaye, P.

Di Marzio, C. A.

Dunsby, C.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

Eckersley, R.

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

Elson, D. S.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

Farahi, S.

Forget, B. C.

Frejlich, J.

I. de Oliveira and J. Frejlich, Phys. Rev. A 64, 033806 (2001).
[CrossRef]

Grabar, A. A.

Gross, M.

Gunter, P.

Hong, Y. H.

Huignard, J. P.

Jazbinsek, M.

Leveque-Fort, S.

Li, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

Maguluri, G.

Montemezzani, G.

Murray, T. W.

Nieva, A.

Ramaz, F.

Roosen, G.

Roy, R. A.

Sui, L.

Tang, M.-X.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, Interface Focus 1, 632 (2011).
[CrossRef]

R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M.-X. Tang, Opt. Express 19, 7299 (2011).
[CrossRef]

Vysochanskii, Y. M.

Xie, P.

Yang, H. G.

Zhang, H. J.

Zhu, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of UOT based on photorefractive detection: MBR 110, cw Ti:sapphire laser; PBS, polarizing beam splitter; FI, Faraday isolator; MOPA, semiconductor master oscillator power amplifier; L1 through L5, lenses; MET, multielement ultrasound transducer; SPS:Te, photorefractive crystal; PD, photodiode; PA, preamplifier; OSC, oscilloscope; PC, personal computer. The focused ultrasound wave travels along the y direction.

Fig. 2.
Fig. 2.

2D acousto-optic image of a 3 mm absorbing object embedded in a 52 mm phantom (mean free path, ls=100μm), acquired as in [7].

Fig. 3.
Fig. 3.

2D acousto-optic image of an absorbing half-cross embedded in 3 cm thick sample. (a) Photograph of the phantom cut perpendicular to the z axis. (b) Image of the xy plane inside the phantom, extracted from the 3D data. The dotted shape marks the position and shape of the object.

Fig. 4.
Fig. 4.

3D acousto-optic image of an absorbing half-cross embedded in 3 cm thick sample. The cross arms are 2 mm in diameter.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SPD(t)=eαLISdxdy|γ|2(x,y)[1+ηd2+2ηdJ0(βPUSf(tyvUS))].

Metrics