Abstract

We propose an idea to excite localized modes in a photonic crystal (PC) waveguide without ruining the discrete translational symmetry of the lattice. This can be done by arranging dispersive elements having negative permittivity over a desired frequency range into a periodic structure. We demonstrate numerically the realization of a cavity mode inside the air region of a geometrical defectless two-dimensional square-lattice PC consisting of polaritonic cylinders placed in air matrix. The corresponding waveguide structure in the form of a PC fiber supports the cavity mode as a guided mode to propagate along the guiding direction at very small propagation constant with near zero group velocity. These localized modes can be recognized as localized defectless modes inside the structure with four-fold symmetry.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
    [CrossRef]
  2. W. Zhu, A. Agrawal, and A. Nahata, Opt. Express 16, 6216 (2008).
    [CrossRef]
  3. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, Opt. Lett. 31, 308 (2006).
    [CrossRef]
  4. C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).
  5. D. Chen and H. Chen, Opt. Express 18, 3762 (2010).
    [CrossRef]
  6. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, Opt. Express 18, 309 (2010).
    [CrossRef]
  7. A. Hassani, A. Dupuis, and M. Skorobogatiy, Opt. Express 16, 6340 (2008).
    [CrossRef]
  8. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, Opt. Express 17, 8592 (2009).
    [CrossRef]
  9. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. Eijkelenberg, Opt. Lett. 33, 902 (2008).
    [CrossRef]
  10. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, J. Opt. Soc. Am. B 28, 896 (2011).
    [CrossRef]
  11. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, Opt. Express 19, B848 (2011).
    [CrossRef]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).
  13. C. Kittel, Introduction to Solid State Physics (Wiley, 1996).

2011 (3)

2010 (3)

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, Opt. Express 18, 309 (2010).
[CrossRef]

D. Chen and H. Chen, Opt. Express 18, 3762 (2010).
[CrossRef]

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

2009 (1)

2008 (3)

2006 (1)

Adam, A. J. L.

Agrawal, A.

Al-Naib, I. A. I.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Argyros, A.

Bang, O.

Chang, H.-C.

Chee, K. L.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Chen, D.

Chen, H.

Chen, H.-W.

Chen, L.-J.

Dubois, C.

Dupuis, A.

Eijkelenberg, M. A.

Estacio, E.

Fernandez, F. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

Harrington, J. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

Hassani, A.

James, R.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

Jepsen, P. U.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).

Jordens, C.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Kao, T.-F.

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, 1996).

Kock, M.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Lai, C.-H.

Large, M. C. J.

Liu, T.-A.

Lu, J.-Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

Mazhorova, A.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).

Mitrofanov, O.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

Nahata, A.

Nielsen, K.

Peik, S.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Peng, J.-L.

Planken, P. C. M.

Pobre, R.

Ponseca, C. S.

Pupeza, I.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Rasmussen, H. K.

Rozé, M.

Sarukura, N.

Skorobogatiy, M.

Stoeffler, K.

Sun, C.-K.

Ung, B.

Wenke, G.

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).

You, B.

Zhu, W.

IEEE Trans. Terahertz Sci. Technol. (1)

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, IEEE Trans. Terahertz Sci. Technol. 1, 124 (2011).
[CrossRef]

J. Infrared Millimeter Terahertz Waves (1)

C. Jordens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Kock, J. Infrared Millimeter Terahertz Waves 31, 214 (2010).

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (2)

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal Molding the Flow of Light(Princeton University, 2008).

C. Kittel, Introduction to Solid State Physics (Wiley, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Cross section of the PCF-like structure in the x-y plane consisting of a square lattice of LiTaO3 cylinders with radius “r” in air background. The black square in the middle of the structure is the unit cell with lattice constant “a.” (b) Corresponding first Brillouin zone with high symmetry points in the wave vector coordinates.

Fig. 2.
Fig. 2.

In-plane band structures of the defectless structure for TM polarization. The filling factor is fixed at ff=0.7. Five different lattice constants are considered from (a) a=20μm to (e) a=100μm to illustrate the formation of flat bands inside the material bandgap through increasing the lattice constant.

Fig. 3.
Fig. 3.

(Left) Off-axis projected band structure of the defectless structure. The highlighted orange region represents the material gap. (Top right) Localized defectless modes in a larger scale between ωa/2πc=1.18 and 1.32 depicted as red points. The cavity mode occurs at ωa/2πc=1.21 corresponding to 6.48 THz. (Bottom right) Electric field profile of the cavity TM mode for the structure with a=56μm and ff=0.7. The black circles correspond to the location of the adjacent four polaritonic cylinders in the lattice. The coordinates have been normalized in terms of lattice space increment Δ in the x and y coordinate directions.

Metrics