Abstract

Dynamic generation of plasmonic Moiré fringes using a phase engineered optical vortex (OV) beam is experimentally demonstrated. Owing to the unique helical phase carried by an OV beam, the initial phase of surface plasmon polaritons (SPPs) emanating from a metallic grating can be adjusted dynamically by changing the phase hologram displayed on a spatial light modulator. Plasmonic Moiré fringes are readily achieved by overlapping two SPP standing waves with certain angular misalignment, excited by the positive and negative topological charge components, respectively, of a cogwheel-like OV beam. The near-field scanning optical microscopy measurement result of SPP distributions has shown a good agreement with the numerical predictions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Creath, J. Schmit, and J. C. Wyant, Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), p. 756.
  2. K. Patorski and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).
  3. C. A. Walker, Handbook of Moiré Measurement (IoP, 2004).
  4. Z. W. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang, Opt. Lett. 32, 629 (2007).
    [CrossRef]
  5. F. B. Deng, C. L. Du, and X. G. Luo, J. Opt. Soc. Am. B 25, 443 (2008).
    [CrossRef]
  6. E. Ozbay, Science 311, 189 (2006).
    [CrossRef]
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
    [CrossRef]
  8. D. L. Andrews, Structured Light and its Applications (Elsevier, 2008).
  9. J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974).
    [CrossRef]
  10. P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, Appl. Phys. Lett. 97, 241109 (2010).
    [CrossRef]
  11. G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang, Opt. Express 19, 224 (2011).
    [CrossRef]
  12. D. W. Zhang and X.-C. Yuan, Opt. Lett. 28, 1864 (2003).
    [CrossRef]
  13. Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5, 957 (2005).
    [CrossRef]
  14. Q. Wang, J. Bu, and X.-C. Yuan, Opt. Express 18, 2662 (2010).
    [CrossRef]
  15. M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).
    [CrossRef]

2011 (2)

2010 (2)

Q. Wang, J. Bu, and X.-C. Yuan, Opt. Express 18, 2662 (2010).
[CrossRef]

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

2005 (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5, 957 (2005).
[CrossRef]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

D. W. Zhang and X.-C. Yuan, Opt. Lett. 28, 1864 (2003).
[CrossRef]

1974 (1)

J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974).
[CrossRef]

Andrews, D. L.

D. L. Andrews, Structured Light and its Applications (Elsevier, 2008).

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Berry, M. V.

J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974).
[CrossRef]

Bu, J.

Creath, K.

K. Creath, J. Schmit, and J. C. Wyant, Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), p. 756.

Deng, F. B.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Du, C. L.

Durant, S.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).
[CrossRef]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).
[CrossRef]

Kujawinska, M.

K. Patorski and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

Lee, H.

Liu, Z. W.

Luo, X. G.

Nye, J. F.

J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974).
[CrossRef]

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).
[CrossRef]

Ozbay, E.

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

Patorski, K.

K. Patorski and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

Pikus, Y.

Schmit, J.

K. Creath, J. Schmit, and J. C. Wyant, Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), p. 756.

Sun, C.

Tan, P. S.

G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang, Opt. Express 19, 224 (2011).
[CrossRef]

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Walker, C. A.

C. A. Walker, Handbook of Moiré Measurement (IoP, 2004).

Wang, Q.

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5, 957 (2005).
[CrossRef]

Wyant, J. C.

K. Creath, J. Schmit, and J. C. Wyant, Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), p. 756.

Xiong, Y.

Yuan, G. H.

G. H. Yuan, X.-C. Yuan, J. Bu, P. S. Tan, and Q. Wang, Opt. Express 19, 224 (2011).
[CrossRef]

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

Yuan, X.-C.

Zhang, D. W.

Zhang, X.

Appl. Phys. Lett. (1)

P. S. Tan, X.-C. Yuan, G. H. Yuan, and Q. Wang, Appl. Phys. Lett. 97, 241109 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

Z. W. Liu, Q. H. Wei, and X. Zhang, Nano Lett. 5, 957 (2005).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. R. Soc. A (1)

J. F. Nye and M. V. Berry, Proc. R. Soc. A 336, 165 (1974).
[CrossRef]

Science (2)

E. Ozbay, Science 311, 189 (2006).
[CrossRef]

M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).
[CrossRef]

Other (4)

D. L. Andrews, Structured Light and its Applications (Elsevier, 2008).

K. Creath, J. Schmit, and J. C. Wyant, Optical Shop Testing, D. Malacara, ed. (Wiley, 2007), p. 756.

K. Patorski and M. Kujawinska, Handbook of the Moiré Fringe Technique (Elsevier, 1993).

C. A. Walker, Handbook of Moiré Measurement (IoP, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic configuration of the experimental setup, where a phase hologram is coded on an spatial light modulator (SLM) to generate OV beams with various topological charges and NSOM is used to capture the SPP distributions. The inset shows the NSOM-measured intensity profiles of two types of incident OV beams: (left) a common OV beam of l=6 and (right) a cogwheel-like OV beam of l=±6.

Fig. 2.
Fig. 2.

(a) Scanning electron microscopy image of the metallic grating: length 30 μm, period 610 nm, and slit width 240 nm. The thickness of silver film is 100 nm; (b) NSOM-measured SPP distributions under the illumination of an OV beam of l=6. The inset shows the OV beam’s phase profile after normalization to 2π. The blue arrows indicate the propagating direction of SPPs with an angular displacement.

Fig. 3.
Fig. 3.

(a) SEM image of four metallic gratings to generate plasmonic Moiré fringes. The central area is 12μm×12μm. Black arrow shows the polarization direction of incident OV beam. Red solid arrows and blue dashed arrows show the propagation direction of SPP excited by positive and negative topological charge OV beams, respectively. NSOM-measured 2D SPP standing waves excited by an OV beam of (b) l=6 and (c) l=6; (d) NSOM-recorded plasmonic Moiré fringes excited by a cogwheel-like OV beam of l=±6.

Fig. 4.
Fig. 4.

FDTD calculated 2D SPP standing waves excited by OV beams of (a) l=6 and (b) l=6, where the white arrows show their clockwise and counterclockwise, respectively, angular displacement directions. Plasmonic Moiré fringes excited by cogwheel-like OV beams of (c) l=±6 and (d) l=±10.

Metrics