Abstract

We present the experimental realization of a method to generate predetermined, arbitrary pulse shapes after transmission through an optical fiber in the nonlinear regime. The method is based on simulating the reverse propagation of the desired pulse shape in the fiber. First, linear and nonlinear parameters of a single-mode step-index fiber required for the simulation are determined. The calculated pulse shapes are then generated in a pulse shaper.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  2. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, Opt. Express 17, 1240 (2009).
    [CrossRef]
  3. A. M. Larson and A. T. Yeh, Opt. Express 16, 14723 (2008).
    [CrossRef]
  4. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, J. Opt. 13, 075301 (2011).
    [CrossRef]
  5. M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).
    [CrossRef]
  6. D. Milam, Appl. Opt. 37, 546 (1998).
    [CrossRef]
  7. S. Santran, L. Canioni, L. Sarger, T. Cardinal, and E. Fargin, J. Opt. Soc. Am. B 21, 2180 (2004).
    [CrossRef]
  8. G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
    [CrossRef]
  9. F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
    [CrossRef]
  10. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, Lab2—a virtual femtosecond laser lab, http://www.lab2.de/ .
  11. F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, J. Opt. Soc. Am. B 28, 406 (2011).
    [CrossRef]
  12. M. Pawłowska, A. Patas, G. Achazi, N. Rahmat, F. Weise, and A. Lindinger, J. Opt. Soc. Am. B 29, 833 (2012).
    [CrossRef]

2012

2011

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, J. Opt. 13, 075301 (2011).
[CrossRef]

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, J. Opt. Soc. Am. B 28, 406 (2011).
[CrossRef]

2009

F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, Opt. Express 17, 1240 (2009).
[CrossRef]

2008

2004

2003

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).
[CrossRef]

1998

Achazi, G.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Bischoff, M.

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

Canioni, L.

Cardinal, T.

Cheng, Z.

Fargin, E.

Feurer, T.

F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Frei, F.

F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Galler, A.

F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

Hacker, M.

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

Hofer, M.

Larson, A. M.

Le, T.

Lindinger, A.

Milam, D.

Netz, R.

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

Omenetto, F. G.

Patas, A.

Pawlowska, M.

Psaltis, D.

Rahmat, N.

Santran, S.

Sarger, L.

Sauerbrey, R.

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

Stingl, A.

Stobrawa, G.

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

Tempea, G.

Tsang, M.

Weise, F.

Yeh, A. T.

Appl. Opt.

Appl. Phys. B

G. Stobrawa, M. Hacker, R. Netz, M. Bischoff, and R. Sauerbrey, Appl. Phys. B 76, 333 (2003).
[CrossRef]

J. Chem. Phys.

F. Frei, A. Galler, and T. Feurer, J. Chem. Phys. 130, 034302 (2009).
[CrossRef]

J. Opt.

F. Weise, M. Pawłowska, G. Achazi, and A. Lindinger, J. Opt. 13, 075301 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, Lab2—a virtual femtosecond laser lab, http://www.lab2.de/ .

G. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Influence of SPM on the pulse shape depending on pulse energy for (a) varying linear chirp and (b) two subpulses 600 fs apart.

Fig. 2.
Fig. 2.

Measured cross-correlation traces of linearly chirped single pulses obtained by reverse propagation (red, solid) and by linear compensation (blue, dashed–dotted) compared to theoretical traces (black, dashed). Inset, corresponding spectra.

Fig. 3.
Fig. 3.

Measured cross-correlation traces obtained by reverse propagation (red, solid) and by linear compensation (blue, dashed–dotted) compared to theoretical traces (black, dashed) for double pulses with subpulses with (a) opposite linear chirp and (b) opposite quadratic chirp.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Az=[α2+iβ222t2β363t3+iγ|A|2]A,

Metrics