Abstract

A directional vibration sensor based on polarization-controlled cladding-to-core recoupling is demonstrated. A compact structure in which a short section of multi-mode fiber (MMF) stub containing a weakly tilted fiber Bragg grating (TFBG) is spliced to another single-mode fiber without any lateral offset. Multiple core modes of the MMF are coupled at the junction and appear as well defined resonances in reflection from the TFBG. Some of those resonances exhibit a strong polarization and bending dependence. Both the orientation and the amplitude of the vibrations can be determined unambiguously via dual-path power detection of the orthogonal-polarimetric lowest order LP1n modes. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental LP01 mode resonance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photonic Rev.1 (2012).
    [CrossRef]
  2. C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
    [CrossRef]
  3. Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
    [CrossRef]
  4. Y. Shevchenko, C. Chen, M. Dakka, and J. Albert, Opt. Lett. 35, 637 (2010).
    [CrossRef]
  5. T. Guo, A. Ivanov, C. Chen, and J. Albert, Opt. Lett. 33, 1004 (2008).
    [CrossRef]
  6. T. Guo, L. Shao, H. Tam, P. Krug, and J. Albert, Opt. Express 17, 20651 (2009).
    [CrossRef]
  7. L. Shao and J. Albert, Opt. Lett. 35, 1034 (2010).
    [CrossRef]
  8. Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
    [CrossRef]
  9. B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
    [CrossRef]

2012 (1)

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photonic Rev.1 (2012).
[CrossRef]

2010 (4)

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Y. Shevchenko, C. Chen, M. Dakka, and J. Albert, Opt. Lett. 35, 637 (2010).
[CrossRef]

L. Shao and J. Albert, Opt. Lett. 35, 1034 (2010).
[CrossRef]

2009 (2)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

T. Guo, L. Shao, H. Tam, P. Krug, and J. Albert, Opt. Express 17, 20651 (2009).
[CrossRef]

2008 (2)

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

T. Guo, A. Ivanov, C. Chen, and J. Albert, Opt. Lett. 33, 1004 (2008).
[CrossRef]

Albert, J.

Bette, S.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photonic Rev.1 (2012).
[CrossRef]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

Chan, C. C.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

Chen, C.

Y. Shevchenko, C. Chen, M. Dakka, and J. Albert, Opt. Lett. 35, 637 (2010).
[CrossRef]

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

T. Guo, A. Ivanov, C. Chen, and J. Albert, Opt. Lett. 33, 1004 (2008).
[CrossRef]

Dakka, M.

Dong, X. Y.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

Geng, R.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Gu, B.

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Guo, T.

He, S.

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Ivanov, A.

Jian, S.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Jin, Y. X.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

Krug, P.

Liu, C.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Lu, Y.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Mégret, P.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

Ning, T.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Shao, L.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photonic Rev.1 (2012).
[CrossRef]

Shevchenko, Y.

Tam, H.

Wang, C.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Wuilpart, M.

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

Zhang, A. P.

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

Zhang, F.

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

Zhang, Y. F.

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

Zhou, B.

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Y. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, IEEE J. Lightwave Technol. 28, 1677 (2010).
[CrossRef]

IEEE Photon. J. (1)

B. Zhou, A. P. Zhang, B. Gu, and S. He, IEEE Photon. J. 2, 152 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Caucheteur, S. Bette, C. Chen, M. Wuilpart, P. Mégret, and J. Albert, IEEE Photon. Technol. Lett. 20, 2153 (2008).
[CrossRef]

Laser Photonic Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photonic Rev.1 (2012).
[CrossRef]

Opt. Commun. (1)

Y. X. Jin, C. C. Chan, X. Y. Dong, and Y. F. Zhang, Opt. Commun. 282, 3905 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of MMF-TFBG vector vibroscope.

Fig. 2.
Fig. 2.

Transmission and reflection spectra of 2 deg MMF-TFBG.

Fig. 3.
Fig. 3.

Simulation spectrum of MMF-TFBG and its component azimuthal mode families LP0m and LP1n (with Y-offsets). Insets show the transverse electric field amplitude distributions of each mode.

Fig. 4.
Fig. 4.

Schematic diagram of vibration sensing system. Insets show the dual-path power detection of the orthogonal-polarimetric odd cladding modes (LP11 mode in S-polarization and LP12 mode in P-polarization) for vector vibration measurement.

Fig. 5.
Fig. 5.

Spectral comparison of two orthogonal polarimetric reflections (S- and P-polarizations) of MMF-TFBG via the PBS, and their response to orthogonal-polarimetric bending (X- and Y-axis).

Fig. 6.
Fig. 6.

Real-time power output of PD1 (LP11 mode) and PD2 (LP12 mode) under a given vibration (29 Hz) with different orientations of 0 deg (a), 90 deg (b) and 45 deg (c), and (d) the stable power references of fundamental core mode (LP01) and higher order even modes (LP02LP03) under vibrations with arbitrary orientations.

Metrics