Abstract

Molybdenum-doped lithium niobate crystals were grown under different polarization conditions and their holographic properties were investigated. In contrast to current dopants, hexavalent molybdenum prefers niobium sites. Thereby, holographic storage becomes possible from the ultraviolet to the visible with considerably lower response time. The response time of 0.5 mol. % Mo-doped LiNbO3 can be especially shortened to as small as 0.35 s with a still high saturation diffraction efficiency of about 60% at 351 nm. Molybdenum-doped lithium niobate thus is a promising candidate for all-color holographic storage applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription