Abstract

We present fiber Bragg grating fabricated in rectangular microfiber for temperature-independent refractive index (RI) measurement. The grating has two Bragg peaks due to the high geometrical birefringence of the rectangular microfiber. The two peaks present different RI responses because the modes along the orthogonal polarizations have different energy fractions in terms of evanescent field outside the silica microfiber and hence the light/liquid interaction strength are different. In contrast, they exhibit identical temperature sensitivities because most mode energy is confined in the microfiber and the thermal-optic effect of silica dominantly determines the temperature response. As a result, temperature-independent RI sensing can be realized by monitoring the wavelength separation between the two peaks.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fang, C. R. Liao, and D. N. Wang, Opt. Lett. 35, 1007 (2010).
    [CrossRef]
  2. Y. X. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. K. Yu, and L. M. Tong, Opt. Lett. 36, 3115 (2011).
    [CrossRef]
  3. M. Ding, M. N. Zervas, and G. Brambilla, Opt. Express 19, 15621 (2011).
    [CrossRef]
  4. Y. Zhang, B. Lin, S. C. Tjin, H. Zhang, G. H. Wang, P. Shum, and X. L. Zhang, Opt. Express 18, 26345 (2010).
    [CrossRef]
  5. G. Wang, P. P. Shum, H. P. Ho, X. Yu, D. J. J. Hu, Y. Cui, L. Tong, and C. Lin, Opt. Express 19, 8930 (2011).
    [CrossRef]
  6. Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
    [CrossRef]
  7. Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
    [CrossRef]
  8. Y. Jung, G. Brambilla, K. Oh, and D. J. Richardson, Opt. Lett. 35, 378 (2010).
    [CrossRef]
  9. H. Xuan, J. Ju, and W. Jin, Opt. Express 18, 3828(2010).
    [CrossRef]
  10. S. M. Lee, M. Y. Jeong, and S. S. Saini, J. Lightwave Technol. 30, 1025 (2012).
    [CrossRef]

2012 (2)

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

S. M. Lee, M. Y. Jeong, and S. S. Saini, J. Lightwave Technol. 30, 1025 (2012).
[CrossRef]

2011 (4)

2010 (4)

Brambilla, G.

Cui, Y.

Ding, M.

Fang, X.

Gao, S.

Guan, B. O.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Ho, H. P.

Hu, D. J. J.

Jeong, M. Y.

Jin, L.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Jin, W.

Ju, J.

Jung, Y.

Lee, S. M.

Li, J.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Liao, C. R.

Lin, B.

Lin, C.

Liu, Y. X.

Meng, C.

Oh, K.

Ran, Y.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Richardson, D. J.

Saini, S. S.

Shum, P.

Shum, P. P.

Sun, L. P.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Tan, Y. N.

Y. Ran, L. Jin, Y. N. Tan, L. P. Sun, J. Li, and B. O. Guan, IEEE Photon. J. 4, 181 (2012).
[CrossRef]

Y. Ran, Y. N. Tan, L. P. Sun, S. Gao, J. Li, L. Jin, and B. O. Guan, Opt. Express 19, 18577 (2011).
[CrossRef]

Tjin, S. C.

Tong, L.

Tong, L. M.

Wang, D. N.

Wang, G.

Wang, G. H.

Xiao, Y.

Xuan, H.

Yu, H. K.

Yu, X.

Zervas, M. N.

Zhang, A. P.

Zhang, H.

Zhang, X. L.

Zhang, Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Optical microscope image of cross-sectional profile of the rectangular silica fiber; (b) optical microscope images of the fabricated rectangular microfibers with different dimensions; (c) simulated mode energy profile in the microfiber.

Fig. 2.
Fig. 2.

Reflection spectra of the mFBGs in rectangular microfibers with different dimensions of “a.”

Fig. 3.
Fig. 3.

Modal birefringence as a function of microfiber dimensions. The solid line is the theoretically simulated result; the dot is the value estimated from the mFBG peak separation.

Fig. 4.
Fig. 4.

Peak wavelength shifts as functions of ambient RI at 20 °C. Inset: peak separation versus RI.

Fig. 5.
Fig. 5.

Peak wavelength shifts as functions of temperature. Inset: the peak separation versus temperature.

Tables (1)

Tables Icon

Table 1. RI Measurement of Pure Water in Different Temperature Using the Rectangular m-FBG and the Relative Error Compared with the Actual Values

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ws=47.742×I18.808×I229.62,

Metrics