Abstract

We demonstrate a tunable crystalline Raman laser by varying the temperature of Raman crystal. Nd:YAG and YVO4 crystals were selected as the laser and Raman gain media, respectively. The center wavelength of this Nd:YAG/YVO4 Raman laser was tuned over a 0.49 nm range from 1175.76 to 1175.27 nm when the temperature of the Raman crystal was adjusted from 5 °C to 150 °C. The characteristics of this Raman laser including tunability, output power, and beam quality factors (M2) dependent on temperature were also studied in this paper.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
    [CrossRef]
  2. H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
    [CrossRef]
  3. Y. F. Chen, Opt. Lett. 29, 2172 (2004).
    [CrossRef]
  4. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, Opt. Express 15, 7038 (2007).
    [CrossRef]
  5. Y. Duan, H. Zhu, C. Huang, G. Zhang, and Y. Wei, Opt. Express 19, 6333 (2011).
    [CrossRef]
  6. G. M. A. Gad, H. J. Eichler, and A. A. Kaminskii, Opt. Lett. 28, 426 (2003).
    [CrossRef]
  7. R. P. Mildren, H. M. Pask, H. Ogilvy, and J. A. Piper, Opt. Lett. 30, 1500 (2005).
    [CrossRef]
  8. C. K. N. Patel and E. D. Shaw, Phys. Rev. Lett. 24, 451 (1970).
    [CrossRef]
  9. C. Lin, R. H. Stolen, W. G. French, and T. G. Malone, Opt. Lett. 1, 96 (1977).
    [CrossRef]
  10. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, Opt. Lett. 25, 472 (2000).
    [CrossRef]
  11. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, Opt. Express 19, 24165 (2011).
    [CrossRef]
  12. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
    [CrossRef]
  13. T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
    [CrossRef]
  14. P. G. Zverev, J. Phys. Conf. Ser. 92, 012073 (2007).
    [CrossRef]
  15. P. G. Klemens, Phys. Rev. 148, 845 (1966).
    [CrossRef]

2011 (2)

2007 (2)

2005 (1)

2004 (1)

2003 (2)

2000 (1)

1999 (1)

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

1983 (1)

M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
[CrossRef]

1977 (1)

1970 (2)

T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
[CrossRef]

C. K. N. Patel and E. D. Shaw, Phys. Rev. Lett. 24, 451 (1970).
[CrossRef]

1966 (1)

P. G. Klemens, Phys. Rev. 148, 845 (1966).
[CrossRef]

Aggarwal, R. L.

T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
[CrossRef]

Austin, W. L.

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

Balkanski, M.

M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
[CrossRef]

Carlsten, J. L.

Chen, Y. F.

Dawson, M. D.

Dekker, P.

Duan, Y.

Eichler, H. J.

French, W. G.

Gad, G. M. A.

Haro, E.

M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
[CrossRef]

Hart, T. R.

T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
[CrossRef]

Hastie, J. E.

Huang, C.

Kaminskii, A. A.

Kemp, A. J.

Klemens, P. G.

P. G. Klemens, Phys. Rev. 148, 845 (1966).
[CrossRef]

Lax, B.

T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
[CrossRef]

Lin, C.

Malone, T. G.

Meng, L. S.

Mildren, R. P.

Murray, J. T.

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

Ogilvy, H.

Parrotta, D. C.

Pask, H. M.

Patel, C. K. N.

C. K. N. Patel and E. D. Shaw, Phys. Rev. Lett. 24, 451 (1970).
[CrossRef]

Piper, J. A.

Powell, R. C.

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

Repasky, K. S.

Roos, P. A.

Shaw, E. D.

C. K. N. Patel and E. D. Shaw, Phys. Rev. Lett. 24, 451 (1970).
[CrossRef]

Spence, D. J.

Stolen, R. H.

Wallis, R. F.

M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
[CrossRef]

Wei, Y.

Zhang, G.

Zhu, H.

Zverev, P. G.

P. G. Zverev, J. Phys. Conf. Ser. 92, 012073 (2007).
[CrossRef]

J. Phys. Conf. Ser. (1)

P. G. Zverev, J. Phys. Conf. Ser. 92, 012073 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (1)

J. T. Murray, W. L. Austin, and R. C. Powell, Opt. Mater. 11, 353 (1999).
[CrossRef]

Phys. Rev. (1)

P. G. Klemens, Phys. Rev. 148, 845 (1966).
[CrossRef]

Phys. Rev. B (2)

M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
[CrossRef]

T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

C. K. N. Patel and E. D. Shaw, Phys. Rev. Lett. 24, 451 (1970).
[CrossRef]

Prog. Quantum Electron. (1)

H. M. Pask, Prog. Quantum Electron. 27, 3 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic configuration of the tunable Raman laser: LD, laser diode; CL, coupling lens; LC, laser crystal; AO, acousto-optic Q-switch; RC, Raman crystal; TC, temperature controller.

Fig. 2.
Fig. 2.

Output power of Raman laser versus incident diode power at different pulse repetition rates. Inset depicts the temporal profile of the Raman laser.

Fig. 3.
Fig. 3.

Center wavelength versus the Raman crystal temperature. Insets show the spectra.

Fig. 4.
Fig. 4.

Output power and pulse width versus the Raman crystal temperature.

Fig. 5.
Fig. 5.

Beam quality factors (M2) at different points of the temperature. Inset is the beam profile at 150 °C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔυR(T)=ΔυR(0){1+2/[exp(ω0/2κBT)1]},

Metrics