Abstract

It is shown that twisted stochastic light can serve as illumination that may produce images with a resolution overcoming the Rayleigh limit by an order of magnitude. This finding is illustrated for an isoplanatic axially symmetric system with low angular aperture and twisted scalar Gaussian Schell-model illumination.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 1999).
  2. J. W. Goodman, Statistical Optics (Wiley, 1985).
  3. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  4. G. A. Swartzlander, Opt. Lett. 26, 497 (2001).
    [CrossRef]
  5. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
    [CrossRef]
  6. A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
    [CrossRef]
  7. R. Simon and N. Mukunda, J. Opt. Soc. Am. A 10, 95 (1993).
    [CrossRef]
  8. Y. Cai and L. Hu, Opt. Lett. 31, 685 (2006).
    [CrossRef]
  9. F. Wang and Y. Cai, Opt. Express 18, 24661 (2010).
    [CrossRef]
  10. A. S. Ostrovsky, M. A. Olvera-Santamaria, and P. C. Romero-Soria, Opt. Lett. 36, 1677 (2011).
    [CrossRef]

2011

2010

2006

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Y. Cai and L. Hu, Opt. Lett. 31, 685 (2006).
[CrossRef]

2005

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
[CrossRef]

2001

1993

Anzolin, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Barbieri, C.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Bianchini, A.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 1999).

Cai, Y.

Desyatnikov, A. S.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Hu, L.

Kivshar, Y. S.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
[CrossRef]

Mukunda, N.

Olvera-Santamaria, M. A.

Ostrovsky, A. S.

Romero-Soria, P. C.

Simon, R.

Swartzlander, G. A.

Tamburini, F.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Torner, L.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
[CrossRef]

Umbriaco, G.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Wang, F.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 1999).

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, Phys. Rev. Lett. 97, 163903 (2006).
[CrossRef]

Prog. Opt.

A. S. Desyatnikov, Y. S. Kivshar, and L. Torner, Prog. Opt. 47, 291 (2005).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed.(Cambridge University, 1999).

J. W. Goodman, Statistical Optics (Wiley, 1985).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Two-lens imaging system.

Fig. 2.
Fig. 2.

Image of two illuminated pinholes, plotted in normalized coordinates, for different phases ϕt. Other parameters: δ=0.1mm, λ=0.59μm, R=10mm, f=0.5m, σ=1mm, d=0.61λf/R, and y0=5mm.

Fig. 3.
Fig. 3.

Image of two illuminated pinholes, plotted in normalized coordinates, for different coherence width δ, with ϕt=π, d=0.24λf/R. Other parameters are the same as in Fig. 2.

Fig. 4.
Fig. 4.

Contour image of two pinholes with completely incoherent illuminating source (left) and partially coherent illuminating source δ=0.1mm(right) with d=0.213λf/R. Other parameters are the same as in Fig. 2.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W(im)(r1,r2,ω)=o*(ρ1,ω)o(ρ2,ω)W(ob)(ρ1,ρ2,ω)×h*(r1ρ1,ω)h(r2ρ2,ω)dρ1dρ2,
h(rρ)=πR2λf[2J1(2πR|rρ|/λf)2πR|rρ|/λf],
W(ob)(ρ1,ρ2,ω)=exp[ρ12+ρ224σ2]exp[(ρ1ρ2)22δ2]×exp[ikμt2(ρ1ρ2)TJ(ρ1ρ2)],
o(ρ)=δ(xd/2,yy0)+δ(x+d/2,yy0).
S(im)(r,ω)=W(im)(r,r,ω)=(πR2λf)2exp(d28σ2y022σ2)×[S2+S+2+2exp(d22δ2)cos(ϕt)SS+],
S±=2J1(2πR(x±d/2)2+(yy0)2/λf)2πR(x±d/2)2+(yy0)2/λf,
ϕt=kμtdy0.
γR=0.61λf/R.
ϕtdy0δ2.
dmin=πkμtR.

Metrics