Abstract

Diffuse fluorescence tomography systems that employ highly sensitive photo-multiplier tubes for single-photon detection are pushing the sensitivity limits of the field. However, each of these detectors only offers a single data projection to be collected, implying these imaging systems either require many detectors or long scan times to collect full data sets for image reconstruction. This study presents a method of utilizing the time-resolved collection capabilities of time-correlated single-photon counting techniques to increase spatial resolution and to reduce the number of data projections to produce reliable fluorescence reconstructions. Experimental tissue phantom results demonstrate that using data at 10 time gates in the fluorescence reconstructions for only 40 data projections provided superior image accuracy when compared to reconstructions on 320 continuous-wave data projections.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Leblond, K. M. Tichauer, R. W. Holt, F. El-Ghussein, and B. W. Pogue, Opt. Lett. 36, 3723 (2011).
    [CrossRef]
  2. K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, Biomed. Opt. Express 2, 3021 (2011).
    [CrossRef]
  3. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
    [CrossRef]
  4. Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, Phys. Med. Biol. 56, 7419 (2011).
    [CrossRef]
  5. X. Cao, B. Zhang, F. Liu, X. Wang, and J. Bai, Opt. Lett. 36, 4515 (2011).
    [CrossRef]
  6. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, J. Opt. Soc. Am. A 21, 231 (2004).
    [CrossRef]

2011

2004

2001

Bai, J.

Cao, X.

Culver, J. P.

Dehghani, H.

K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, Biomed. Opt. Express 2, 3021 (2011).
[CrossRef]

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, Phys. Med. Biol. 56, 7419 (2011).
[CrossRef]

El-Ghussein, F.

Graves, E. E.

Holt, R. W.

Leblond, F.

Liu, F.

Ntziachristos, V.

Pogue, B. W.

Ripoll, J.

Tichauer, K. M.

Vishwanath, K.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, Phys. Med. Biol. 56, 7419 (2011).
[CrossRef]

Wang, X.

Weissleder, R.

Zhang, B.

Zhu, Q.

Q. Zhu, H. Dehghani, K. M. Tichauer, R. W. Holt, K. Vishwanath, F. Leblond, and B. W. Pogue, Phys. Med. Biol. 56, 7419 (2011).
[CrossRef]

K. M. Tichauer, R. W. Holt, F. El-Ghussein, Q. Zhu, H. Dehghani, F. Leblond, and B. W. Pogue, Biomed. Opt. Express 2, 3021 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Sample experimental TPSF, to be binned into the 10 time gates shown by dotted lines bounding each time gate, (b) singular value spectra for the time domain (TD, blue) and continuous wave (CW, red) Jacobians. Shown are 320, 160, 80, 40, and 20 optical projection Jacobian spectra in order of decreasing opacity.

Fig. 2.
Fig. 2.

(a) X-ray CT image slices of the phantom showing the domain imaged with FT, (b) FT image reconstructions of the tissue phantom for slices A and B, with increasing numbers of projections (listed at left).

Tables (1)

Tables Icon

Table 1. Figures of Merit Used to Compare the Performance of TD and CW Image Reconstructions for Slice A of the Phantom Shown in Fig. 2(a)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Jx=d,
(a+)i={ai,ai00,otherwise.

Metrics