Abstract

A procedure for the real-time analysis of laser modes using a phase-only spatial light modulator is outlined. The procedure involves encoding into digital holograms by complex amplitude modulation a set of orthonormal basis functions into which the initial field is decomposed. This approach allows any function to be encoded and refreshed in real time (60 Hz). We implement a decomposition of guided modes propagating in optical fibers and show that we can successfully reconstruct the observed field with very high fidelity.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
    [CrossRef]
  2. J. W. Nicholson, A. D. Yablon, S. Ramachandran, and S. Ghalmi, Opt. Express 16, 7233 (2008).
    [CrossRef]
  3. N. Andermahr, T. Theeg, and C. Fallnich, Appl. Phys. B 91, 353 (2008).
    [CrossRef]
  4. O. A. Schmidt, C. Schulze, D. Flamm, R. Brüning, T. Kaiser, S. Schröter, and M. Duparré, Opt. Express 19, 6741 (2011).
    [CrossRef]
  5. F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, and A. Tünnermann, Opt. Lett. 36, 4572 (2011).
    [CrossRef]
  6. I. A. Litvin, A. Dudley, and A. Forbes, Opt. Express 19, 16760 (2011).
    [CrossRef]
  7. A. Dudley, I. A. Litvin, and A. Forbes, Appl. Opt. 51, 823 (2012).
    [CrossRef]
  8. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, Opt. Express 17, 9347 (2009).
    [CrossRef]
  9. D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, and M. Duparré, Appl. Opt. 51, 987 (2012).
    [CrossRef]
  10. J. P. Kirk and A. L. Jones, J. Opt. Soc. Am. 61, 1023 (1971).
    [CrossRef]
  11. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, Opt. Lett. 35, 3429 (2010).
    [CrossRef]
  12. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef]
  13. V. Arrizón, U. Ruiz, R. Carrada, and L. A. González, J. Opt. Soc. Am. A 24, 3500 (2007).
    [CrossRef]
  14. C. Schulze, O. A. Schmidt, D. Flamm, S. Schröter, and M. Duparré, Proc. SPIE 7914, 79142H (2011).
    [CrossRef]

2012 (2)

2011 (4)

2010 (1)

2009 (1)

2008 (2)

2007 (1)

2005 (1)

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

1971 (2)

Abouraddy, A. F.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

Andermahr, N.

N. Andermahr, T. Theeg, and C. Fallnich, Appl. Phys. B 91, 353 (2008).
[CrossRef]

Arrizón, V.

Borchardt, J.

Brüning, R.

Carrada, R.

Dudley, A.

Duparré, M.

Fallnich, C.

N. Andermahr, T. Theeg, and C. Fallnich, Appl. Phys. B 91, 353 (2008).
[CrossRef]

Fink, Y.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

Flamm, D.

Forbes, A.

Gaida, C.

Ghalmi, S.

Gloge, D.

González, L. A.

Jansen, F.

Jauregui, C.

Joannopoulos, J. D.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

Jones, A. L.

Kaiser, T.

Kirk, J. P.

Limpert, J.

Litvin, I. A.

Nicholson, J. W.

Otto, H.-J.

Ramachandran, S.

Ruiz, U.

Schmidt, O. A.

Schröter, S.

Schulze, C.

Shapira, O.

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

Stutzki, F.

Theeg, T.

N. Andermahr, T. Theeg, and C. Fallnich, Appl. Phys. B 91, 353 (2008).
[CrossRef]

Tünnermann, A.

Yablon, A. D.

Appl. Opt. (3)

Appl. Phys. B (1)

N. Andermahr, T. Theeg, and C. Fallnich, Appl. Phys. B 91, 353 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

O. Shapira, A. F. Abouraddy, J. D. Joannopoulos, and Y. Fink, Phys. Rev. Lett. 94, 143902 (2005).
[CrossRef]

Proc. SPIE (1)

C. Schulze, O. A. Schmidt, D. Flamm, S. Schröter, and M. Duparré, Proc. SPIE 7914, 79142H (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Encoded phase modulations Ψ(r) for measuring the modal power of the six lowest-order LP modes guided in the step-index fiber under test. (a)–(f): LP01, LP02, LP11e, LP11o, LP21e, LP21o. Note that the required phase range for the SLM is merely 1.2π [13].

Fig. 2.
Fig. 2.

Schematic of the experimental setup. The SLM acts as a device for arbitrary complex amplitude modulation of the output modes from the fiber.

Fig. 3.
Fig. 3.

Mode analysis of a fundamental mode-like beam. (a) Measured near-field intensity. (b)–(g) Correlation answers using the six transmission functions of Fig. 1. (h) Measured modal power spectrum. (i) Resulting reconstructed near-field intensity.

Fig. 4.
Fig. 4.

Mode analysis of a beam with higher-order mode content. (a) Measured near-field intensity. (b)–(g) Correlation answers using the six transmission functions of Fig. 1. (h) Measured modal power spectrum. (i) Resulting reconstructed near-field intensity.

Fig. 5.
Fig. 5.

Mode analysis of a fundamental mode-like beam. (a) Measured near-field intensity. (b) Spatially separated correlation answers using the multiplexing technique. (c) Measured modal power spectrum. (d) Resulting reconstructed near-field intensity.

Metrics