Abstract

We present a fiber-based method for generating vortex beams with a tunable value of orbital angular momentum from 1 to +1 per photon. We propose a new (to our knowledge) method to determine the modal content of the fiber and demonstrate high purity of the desired vortex state (97% after 20 m, even after bends and twists). This method has immediate utility for the multitude of applications in science and technology that exploit vortex light states.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
    [CrossRef]
  2. J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
    [CrossRef]
  3. M. K. Kreysing, T. Kießling, A. Fritsch, C. Dietrich, J. R. Guck, and J. A. Käs, Opt. Express 16, 16984 (2008).
    [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, Opt. Express 12, 5448 (2004).
    [CrossRef]
  5. A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
    [CrossRef]
  6. J. W. R. Tabosa, and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
    [CrossRef]
  7. S. W. Hell, and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef]
  8. S. Ramachandran, C. Smith, P. Kristensen, and P. Balling, Opt. Express 18, 23212 (2010).
    [CrossRef]
  9. A. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  10. P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
    [CrossRef]
  11. D. McGloin, N. B. Simpson, and M. J. Padgett, Appl. Opt. 37, 469 (1998).
    [CrossRef]
  12. S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
    [CrossRef]
  13. R. Olshansky, Appl. Opt. 14, 935 (1975).
    [CrossRef]
  14. S. Ramachandran, P. Kristensen, and M. F. Yan, Opt. Lett. 34, 2525 (2009).
    [CrossRef]
  15. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, Opt. Lett. 12, 281 (1987).
    [CrossRef]
  16. C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, Opt. Express 14, 6604 (2006).
    [CrossRef]
  17. M. J. Padgett, and J. Courtial, Opt. Lett. 24, 430 (1999).
    [CrossRef]
  18. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
    [CrossRef]

2011

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

2010

2009

2008

2006

C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, Opt. Express 14, 6604 (2006).
[CrossRef]

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

2004

2003

S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
[CrossRef]

2002

A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

1999

M. J. Padgett, and J. Courtial, Opt. Lett. 24, 430 (1999).
[CrossRef]

J. W. R. Tabosa, and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
[CrossRef]

1998

1994

1992

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

1987

1975

Alfano, R. R.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

Alhassen, F.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Balling, P.

Barnett, S.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Blake, J. N.

Courtial, J.

Curtis, J. E.

C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, Opt. Express 14, 6604 (2006).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Dashti, P. Z.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

Dietrich, C.

Engan, H. E.

Franke-Arnold, S.

Fritsch, A.

Ghalmi, S.

S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
[CrossRef]

Gibson, G.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Guck, J. R.

Hell, S. W.

Käs, J. A.

Kießling, T.

Kim, B. Y.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Kreysing, M. K.

Kristensen, P.

Lee, H. P.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

Love, J. D.

A. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).

McGloin, D.

Milione, G.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

Nicholson, J.

S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
[CrossRef]

Nolan, D. A.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

Olshansky, R.

Padgett, M.

Padgett, M. J.

Pas’ko, V.

Petrov, D. V.

J. W. R. Tabosa, and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
[CrossRef]

Ramachandran, S.

Schmitz, C. H. J.

Shaw, H. J.

Simpson, N. B.

Smith, C.

Snyder, A.

A. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Spatz, J. P.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Sztul, H. I.

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

Tabosa, J. W. R.

J. W. R. Tabosa, and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
[CrossRef]

Uhrig, K.

Vasnetsov, M.

Vaziri, A.

A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Weihs, G.

A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Wichmann, J.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Yan, M.

S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
[CrossRef]

Yan, M. F.

Zeilinger, A.

A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

S. Ramachandran, J. Nicholson, S. Ghalmi, and M. Yan, IEEE Photon. Technol. Lett. 15, 1171 (2003).
[CrossRef]

Opt. Commun.

J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207, 169 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992).
[CrossRef]

Phys. Rev. Lett.

P. Z. Dashti, F. Alhassen, and H. P. Lee, Phys. Rev. Lett. 96, 043604 (2006).
[CrossRef]

G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, Phys. Rev. Lett. 107, 053601 (2011).
[CrossRef]

A. Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002).
[CrossRef]

J. W. R. Tabosa, and D. V. Petrov, Phys. Rev. Lett. 83, 4967 (1999).
[CrossRef]

Other

A. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Experimental setup, (b) grating resonance spectrum used to deduce HE21odd mode-conversion level, (c) camera image showing l=1 OAM, s=1 SAM state.

Fig. 2.
Fig. 2.

(a) Azimuthal intensity profile of LC projection for radius r0; (b) Fourier series coefficients for the profile in (a); (c) extracted modal power contributions.

Fig. 3.
Fig. 3.

(a) Mode powers as the PolCon2 was adjusted to obtain the desired superposition of the OAM states, (b) observed camera images at points A–C.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V11+(r,θ)=def(HE11x+iHE11y)/2=(x^+iy^)F01/2,V11(r,θ)=def(HE11xiHE11y)/2=(x^iy^)F01/2,V21+(r,θ)=def(HE21e+iHE21o)/2=eiθ(x^+iy^)F11/2,V21(r,θ)=def(HE21eiHE21o)/2=eiθ(x^iy^)F11/2,VT+(r,θ)=def(TM01iTE01)/2=eiθ(x^+iy^)F11/2,VT(r,θ)=def(TM01+iTE01)/2=eiθ(x^iy^)F11/2,
E(r,θ)=l=[11,21,T]s=[+,]γlsVls(r,θ),
MPIls=def10log10(|γls|2/Ptot),
|P+E(r,θ)|2=|γ11+F01(r)+γ21+eiθF11(r)+γT+eiθF11(r)|2.
|P+E(r0,θ)|2DC+Δ1cos(θ+ϕ21,11)+Δ2cos(2θ+ϕ21,T),
DC=def|γ11+|2+|γ21+|2+|γT+|2,
Δ1=def2|γ11+||γ21+|,
Δ2=def2|γ21+||γT+|.

Metrics