Abstract

It is shown theoretically that the nonlinear optical Kerr effect can be used to build an all optical configuration controlling spectral switches. The main advantage in it is that it can greatly simplify the control method compared to previous schemes using the aperture mechanism or electro-optical one.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Ponomarenko and E. Wolf, Opt. Lett. 27, 1211 (2002).
    [CrossRef]
  2. G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).
    [CrossRef]
  3. B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
    [CrossRef]
  4. H. C. Kandpal, J. Opt. A: Pure. Appl. Opt. 3, 296 (2001).
    [CrossRef]
  5. M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Vol. 42, E. Wolf, ed. (Elsevier, 2001), pp 219–276.
  6. J. T. Foley and E. Wolf, J. Opt. Soc. Am. A 19, 2510 (2002).
    [CrossRef]
  7. P. Han, Opt. Lett. 34, 1303 (2009).
    [CrossRef]
  8. P. Han, App. Phys. Express 4, 022401 (2011).
    [CrossRef]
  9. E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771(1996).
    [CrossRef]
  10. J. Pu, C. Cai, and S. Nemoto, Opt. Express 12, 5131(2004).
    [CrossRef]
  11. P. Han, J. Opt. Soc. Am. A 26, 473 (2009).
    [CrossRef]
  12. P. Han, J. Opt. A 10, 035003 (2008).
    [CrossRef]
  13. P. Han, J. Opt. 13, 035713 (2011).
    [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p 752.
  15. K. J. Kuhn, Laser Engineering (Prentice-Hall, 1998), pp 15, 193, 231.

2011

P. Han, App. Phys. Express 4, 022401 (2011).
[CrossRef]

P. Han, J. Opt. 13, 035713 (2011).
[CrossRef]

2009

2008

P. Han, J. Opt. A 10, 035003 (2008).
[CrossRef]

2007

B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
[CrossRef]

2004

2002

2001

H. C. Kandpal, J. Opt. A: Pure. Appl. Opt. 3, 296 (2001).
[CrossRef]

1996

E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771(1996).
[CrossRef]

Cai, C.

Chen, Z.

B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
[CrossRef]

Foley, J. T.

Gbur, G.

G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef]

Han, P.

P. Han, App. Phys. Express 4, 022401 (2011).
[CrossRef]

P. Han, J. Opt. 13, 035713 (2011).
[CrossRef]

P. Han, J. Opt. Soc. Am. A 26, 473 (2009).
[CrossRef]

P. Han, Opt. Lett. 34, 1303 (2009).
[CrossRef]

P. Han, J. Opt. A 10, 035003 (2008).
[CrossRef]

James, D. F. V.

E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771(1996).
[CrossRef]

Kuhn, K. J.

K. J. Kuhn, Laser Engineering (Prentice-Hall, 1998), pp 15, 193, 231.

Nemoto, S.

Ponomarenko, S. A.

Pu, J.

B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
[CrossRef]

J. Pu, C. Cai, and S. Nemoto, Opt. Express 12, 5131(2004).
[CrossRef]

Qu, B.

B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p 752.

Soskin, M. S.

M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Vol. 42, E. Wolf, ed. (Elsevier, 2001), pp 219–276.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p 752.

Vasnetsov, M. V.

M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Vol. 42, E. Wolf, ed. (Elsevier, 2001), pp 219–276.

Visser, T. D.

G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef]

Wolf, E.

G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef]

S. A. Ponomarenko and E. Wolf, Opt. Lett. 27, 1211 (2002).
[CrossRef]

J. T. Foley and E. Wolf, J. Opt. Soc. Am. A 19, 2510 (2002).
[CrossRef]

E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771(1996).
[CrossRef]

App. Phys. Express

P. Han, App. Phys. Express 4, 022401 (2011).
[CrossRef]

J. Opt.

P. Han, J. Opt. 13, 035713 (2011).
[CrossRef]

J. Opt. A

P. Han, J. Opt. A 10, 035003 (2008).
[CrossRef]

J. Opt. A: Pure. Appl. Opt.

H. C. Kandpal, J. Opt. A: Pure. Appl. Opt. 3, 296 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Laser Tech.

B. Qu, J. Pu, and Z. Chen, Opt. Laser Tech. 39, 1226 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

G. Gbur, T. D. Visser, and E. Wolf, Phys. Rev. Lett. 88, 013901 (2002).
[CrossRef]

Rep. Prog. Phys.

E. Wolf and D. F. V. James, Rep. Prog. Phys. 59, 771(1996).
[CrossRef]

Other

M. S. Soskin and M. V. Vasnetsov, in Progress in Optics, Vol. 42, E. Wolf, ed. (Elsevier, 2001), pp 219–276.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), p 752.

K. J. Kuhn, Laser Engineering (Prentice-Hall, 1998), pp 15, 193, 231.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Basic configuration. An incoming light from the left is normally incident on a double slit. (b) Dimensions and structures of the double slit with a nonlinear material placed in the left slit.

Fig. 2.
Fig. 2.

Normalized spectral intensities for the incident light I(i)(λ) (dotted curve) and the diffracted light I(θ,λ) (solid curve): (a) I0, (b) 3I0, (c) 5I0. (Each curve is normalized to its maximum value.)

Fig. 3.
Fig. 3.

Illustration for the data encoding and information transmission by controlling the light intensity I0. The blueshift (B, in short) is associated with a bit of information such as “1,” and the redshift (R, in short) is associated with a bit of “0.”

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(i)(λ)=I0exp[-(λ-λ0)2Γ2],
g(x)={exp(jΔϕ)·Π(x+a2b)+Π(x-a2b)},
Δϕ=k(n-1)d=2π(n-1)dλ,
n=n0+n2I(i),
I(p,λ)I(i)λ2·cos2(Δϕ2+πfa)·[bsinc(πfb)]2,
I(θ,λ)I(i)×{1λ2cos2(πd(n0+n2I(i)-1)λ+πatan(θ)λ)×[bsinc(πbtan(θ)λ)]2},

Metrics