Abstract

We incorporate, for the first time, optical coherence elastography (OCE) into a needle probe and demonstrate its ability to measure the microscopic deformation of soft tissues located well beyond the depth limit of reports to date. Needle OCE utilizes the force imparted by the needle tip as the loading mechanism and measures tissue deformation ahead of the needle during insertion. Measurements were performed in tissue-mimicking phantoms and ex vivo porcine trachea. Results demonstrate differentiation of tissues based on mechanical properties and highlight the potential of needle OCE for in vivo tissue boundary detection.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
    [CrossRef]
  2. J. Schmitt, Opt. Express 3, 199 (1998).
    [CrossRef]
  3. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, Opt. Lett. 34, 2894 (2009).
    [CrossRef]
  4. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, Opt. Express 17, 21762 (2009).
    [CrossRef]
  5. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, Opt. Express 19, 6623 (2011).
    [CrossRef]
  6. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, Opt. Lett. 25, 1520 (2000).
    [CrossRef]
  7. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, Opt. Lett. 30, 1791 (2005).
    [CrossRef]
  8. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
    [CrossRef]
  9. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
    [CrossRef]
  10. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
    [CrossRef]
  11. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
    [CrossRef]
  12. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, Opt. Lett. 30, 1162 (2005).
    [CrossRef]
  13. O. A. Shergold and N. A. Fleck, Proc. R. Soc. London Ser. A 460, 3037 (2004).
    [CrossRef]
  14. R. D. Kamm, Annu. Rev. Biomed. Eng. 1, 47 (1999).
    [CrossRef]

2011 (3)

2009 (2)

2006 (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

2005 (2)

2004 (1)

O. A. Shergold and N. A. Fleck, Proc. R. Soc. London Ser. A 460, 3037 (2004).
[CrossRef]

2003 (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
[CrossRef]

2000 (1)

1999 (1)

R. D. Kamm, Annu. Rev. Biomed. Eng. 1, 47 (1999).
[CrossRef]

1998 (1)

Adie, S. G.

Boppart, S. A.

Choma, M. A.

Chudoba, C.

Creazzo, T. L.

Curatolo, A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Ellerbee, A. K.

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
[CrossRef]

Fleck, N. A.

O. A. Shergold and N. A. Fleck, Proc. R. Soc. London Ser. A 460, 3037 (2004).
[CrossRef]

Fujimoto, J. G.

Gerstmann, D. K.

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
[CrossRef]

Hillman, T. R.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
[CrossRef]

Insana, M. F.

Izatt, J. A.

Kamm, R. D.

R. D. Kamm, Annu. Rev. Biomed. Eng. 1, 47 (1999).
[CrossRef]

Kennedy, B. F.

Kirk, R. W.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Ko, T.

Kucharczyk, W.

Li, X.

Liang, X.

Lorenser, D.

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Mao, Y. X.

Marcon, N. E.

McLaughlin, R. A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, Opt. Express 17, 21762 (2009).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Munce, N.

Noble, P. B.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

Orescanin, M.

Pitris, C.

Quirk, B. C.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, Opt. Express 19, 6623 (2011).
[CrossRef]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, Opt. Express 17, 21762 (2009).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Robbins, P. D.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Sampson, D. D.

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, Opt. Lett. 36, 3894 (2011).
[CrossRef]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, Opt. Express 19, 6623 (2011).
[CrossRef]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, Opt. Express 17, 21762 (2009).
[CrossRef]

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Saunders, C. M.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Schmitt, J.

Scolaro, L.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Shergold, O. A.

O. A. Shergold and N. A. Fleck, Proc. R. Soc. London Ser. A 460, 3037 (2004).
[CrossRef]

Standish, B.

Toohey, K. S.

Vitkin, I. A.

Wang, R. K.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

Wilson, B. C.

Wood, B. A.

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

Yang, C.

Yang, V. X. D.

Yang, X.

Annu. Rev. Biomed. Eng. (2)

J. F. Greenleaf, M. Fatemi, and M. Insana, Annu. Rev. Biomed. Eng. 5, 57 (2003).
[CrossRef]

R. D. Kamm, Annu. Rev. Biomed. Eng. 1, 47 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Appl. Phys. Lett. 89, 144103 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (to be published).
[CrossRef]

J. Biomed. Opt. (1)

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, J. Biomed. Opt. 16, 036009 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Proc. R. Soc. London Ser. A (1)

O. A. Shergold and N. A. Fleck, Proc. R. Soc. London Ser. A 460, 3037 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Spectral-domain OCT system connected to the forward-facing OCE needle probe (SLD: superluminescent diode; PC: polarization controller; FFT: fast Fourier transform; MTS: motorized translation stage; SMF: single-mode fiber; GRIN: gradient-index fiber).

Fig. 2.
Fig. 2.

(a) Schematic of probe insertion into phantom; (b) motion-mode image (dashed line indicates interface); OCT A-scans and measured displacements at distances (c) 570 μm; (d) 450 μm; and (e) 300 μm from the inclusion. The red stars denote the locations of interfaces, and the black lines indicate the linear fits used to approximate strain.

Fig. 3.
Fig. 3.

Results in ex vivo porcine tracheal wall. (a) OCT and (b) measured displacement at a depth in tissue of 180 μm. Interface locations are denoted by the red stars. (c) Photograph of needle probe being inserted into sample. (d) H&E histology of the tracheal wall at approximate location of needle insertion. Scale bar=100μm.

Metrics