Abstract

We utilize transverse Anderson localization as the waveguiding mechanism in optical fibers with random transverse refractive index profiles. Using experiments and numerical simulations, we show that the transverse localization results in an effective propagating beam diameter that is comparable to that of a typical index-guiding optical fiber.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Anderson, Phys. Rev. 109, 1492 (1958).
    [CrossRef]
  2. S. John, Phys. Rev. Lett. 53, 2169 (1984).
    [CrossRef]
  3. P. W. Anderson, Phil. Mag. B. 52, 505 (1985).
    [CrossRef]
  4. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef]
  5. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
    [CrossRef]
  6. M. Leonetti and C. Lopez, Opt. Lett. 36, 2824 (2011).
    [CrossRef]
  7. A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).
  8. H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
    [CrossRef]
  9. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
    [CrossRef]
  10. W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
    [CrossRef]
  11. J. M. Ziman, Models of Disorder (Cambridge University, 1979).
  12. M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997).
    [CrossRef]

2011

2008

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

2007

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

1997

M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997).
[CrossRef]

1993

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

1989

H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
[CrossRef]

1987

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

1985

P. W. Anderson, Phil. Mag. B. 52, 505 (1985).
[CrossRef]

1984

S. John, Phys. Rev. Lett. 53, 2169 (1984).
[CrossRef]

1960

A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

1958

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[CrossRef]

Anderson, P. W.

P. W. Anderson, Phil. Mag. B. 52, 505 (1985).
[CrossRef]

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[CrossRef]

Avidan, A.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

Berry, M. V.

M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997).
[CrossRef]

Christodoulides, D. N.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

De Raedt, H.

H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
[CrossRef]

de Vries, P.

H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
[CrossRef]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

Huang, W. P.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Ioffe, A. F.

A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

S. John, Phys. Rev. Lett. 53, 2169 (1984).
[CrossRef]

Klein, S.

M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997).
[CrossRef]

Lagendijk, A. D.

H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
[CrossRef]

Lahini, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Leonetti, M.

Lopez, C.

Morandotti, R.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Pozzi, F.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Regel, A. R.

A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

Silberberg, Y.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Sorel, M.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Xu, C. L.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Ziman, J. M.

J. M. Ziman, Models of Disorder (Cambridge University, 1979).

Eur. J. Phys.

M. V. Berry and S. Klein, Eur. J. Phys. 18, 222 (1997).
[CrossRef]

IEEE J. Quantum Electron.

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).
[CrossRef]

Nature

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2007).
[CrossRef]

Opt. Lett.

Phil. Mag. B.

P. W. Anderson, Phil. Mag. B. 52, 505 (1985).
[CrossRef]

Phys. Rev.

P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[CrossRef]

Phys. Rev. Lett.

S. John, Phys. Rev. Lett. 53, 2169 (1984).
[CrossRef]

H. De Raedt, A. D. Lagendijk, and P. de Vries, Phys. Rev. Lett. 62, 47 (1989).
[CrossRef]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013906 (2008).
[CrossRef]

Prog. Semicond.

A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 (1960).

Other

J. M. Ziman, Models of Disorder (Cambridge University, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Sample refractive index profile that we have used for our simulations (p=50%); the black regions have refractive index n1=1.49, while the white regions have refractive index n2=1.59. (b) SEM image of a polished fiber tip; the high and low refractive index regions are not distinguishable in this SEM image. (c) SEM image of a fiber tip exposed to the solvent, where the feature sizes are substantially smaller than the localized beam diameter, as shown in Fig. 3.

Fig. 2.
Fig. 2.

(a) Near-field intensity profile after 60 cm of propagation from experiment; near-field intensity profile after nearly 5 cm of propagation in a sample AOF from (b) experiment and (c) simulation. For comparison, we note that the total side width of each figure is 250 μm.

Fig. 3.
Fig. 3.

The region highlighted in green corresponds to one standard deviation in each direction around the average experimental measurement of the localization length parameter represented by ξavg±σξ. The measurements are carried over fibers each with an approximate length of 5.5 cm. The region highlighted in black corresponds to theoretical simulation of the effective beam radius ξavg±σξ as a function of propagation distance.

Fig. 4.
Fig. 4.

Cross section of the intensity profile of the localized beam averaged over 100 samples of raw data from simulations (lower curve) and 100 samples from experiments (upper curve) in dB units.

Metrics