Abstract

A Faraday anomalous dispersion optical filter (FADOF) with a single transmission peak is achieved by using a buffer-gas (argon, 2 Torr)-filled rubidium cell. At room temperature, the transmission is 0.2% and the bandwidth of the transmission peak is 0.65 GHz. At a temperature of 63° C, the transmission rises to a maximum of 30.6%, with a bandwidth of 1.41 GHz. This FADOF may replace the use of interference filters or virtually imaged phased arrays in imaging modalities.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
    [CrossRef]
  2. X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
    [CrossRef]
  3. B. Yin and T. Shay, Opt. Lett. 16, 1617 (1991).
    [CrossRef]
  4. A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).
  5. H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
    [CrossRef]
  6. J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1998).
    [CrossRef]
  7. P. Yeh, Appl. Opt. 21, 2069 (1982).
    [CrossRef]
  8. S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).
  9. X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).
  10. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, Opt. Lett. 16, 846 (1991).
    [CrossRef]
  11. D. J. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
    [CrossRef]
  12. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, Appl. Opt. 34, 2619 (1995).
    [CrossRef]
  13. S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).
  14. A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
    [CrossRef]
  15. Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
    [CrossRef]
  16. J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).
  17. S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
    [CrossRef]
  18. P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
    [CrossRef]
  19. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
    [CrossRef]
  20. S. Yu and J. Tang, Acta Opt. Sin. 21, 861 (2001).
  21. G. Scarcelli and S. H. Yun, Nat. Photon. 2, 39 (2008).
    [CrossRef]
  22. K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87, 061903 (2005).
    [CrossRef]
  23. F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).
  24. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
    [CrossRef]
  25. Y. Li, L. Zhang, J. Tang, and Q. Wang, Chin. J. Electron. 2, 38 (1995).
  26. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, Opt. Lett. 36, 4611 (2011).
    [CrossRef]
  27. B. Yin, L. S. Alvarez, and T. M. Shay, in TDA Progress Report (NASA, 1994), Vol. 42, Issue 116, pp. 71–85.

2011

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
[CrossRef]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, Opt. Lett. 36, 4611 (2011).
[CrossRef]

2010

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

2009

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

2008

G. Scarcelli and S. H. Yun, Nat. Photon. 2, 39 (2008).
[CrossRef]

2006

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

2005

K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87, 061903 (2005).
[CrossRef]

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).

2003

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

2001

S. Yu and J. Tang, Acta Opt. Sin. 21, 861 (2001).

2000

J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).

1998

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1998).
[CrossRef]

1995

1992

P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
[CrossRef]

1991

1987

X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
[CrossRef]

1982

1980

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Alvarez, L. S.

B. Yin, L. S. Alvarez, and T. M. Shay, in TDA Progress Report (NASA, 1994), Vol. 42, Issue 116, pp. 71–85.

Baird, P.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Benson, K.

Bloom, S. H.

Brimicombe, M.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Cao, Y.

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Chen, H.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Chen, J.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, Opt. Lett. 36, 4611 (2011).
[CrossRef]

Chen, S. S.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Chen, X.

X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
[CrossRef]

Cheng, X.

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
[CrossRef]

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Dai, Y.

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Dick, D. J.

Duan, M.

Fan, D.

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

Gan, J.

Gao, S.

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Gelbwachs, J. A.

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1998).
[CrossRef]

Gong, S.

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
[CrossRef]

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Guo, H.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Han, Y.

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Harrell, S. D.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Hu, X.

Hu, Z. L.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Kong, J.

Korevaar, E.

Koski, K. J.

K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87, 061903 (2005).
[CrossRef]

Krueger, D. A.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Li, F.

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
[CrossRef]

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Li, J.

J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).

Li, Y.

Lin, X.

Lin, Z.

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Liu, C. S.

Liu, S.

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

Liu, Z.

Luo, B.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Popescu, A.

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).

Roberts, G.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Sandars, P.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Scarcelli, G.

G. Scarcelli and S. H. Yun, Nat. Photon. 2, 39 (2008).
[CrossRef]

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Selby, D.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Shay, T.

Shay, T. M.

P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
[CrossRef]

D. J. Dick and T. M. Shay, Opt. Lett. 16, 867 (1991).
[CrossRef]

B. Yin, L. S. Alvarez, and T. M. Shay, in TDA Progress Report (NASA, 1994), Vol. 42, Issue 116, pp. 71–85.

She, C.-Y.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Stacey, D.

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

Sun, Q.

Tang, J.

S. Yu and J. Tang, Acta Opt. Sin. 21, 861 (2001).

J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, Appl. Opt. 34, 2619 (1995).
[CrossRef]

Y. Li, L. Zhang, J. Tang, and Q. Wang, Chin. J. Electron. 2, 38 (1995).

Telegdi, V.

X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
[CrossRef]

Valdez, E. C.

P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
[CrossRef]

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

Walther, T.

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).

Wang, J.

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).

Wang, Q.

Wang, Y.

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

Wanninger, P.

P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
[CrossRef]

Weis, A.

X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
[CrossRef]

Wu, H.

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

Yang, G.

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

Yang, Y.

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, Opt. Lett. 36, 1302 (2011).
[CrossRef]

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

Yarger, J. L.

K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87, 061903 (2005).
[CrossRef]

Yeh, P.

Yin, B.

B. Yin and T. Shay, Opt. Lett. 16, 1617 (1991).
[CrossRef]

B. Yin, L. S. Alvarez, and T. M. Shay, in TDA Progress Report (NASA, 1994), Vol. 42, Issue 116, pp. 71–85.

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Yu, S.

S. Yu and J. Tang, Acta Opt. Sin. 21, 861 (2001).

Yuan, T.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

Yun, S. H.

G. Scarcelli and S. H. Yun, Nat. Photon. 2, 39 (2008).
[CrossRef]

Zhang, L.

Zhang, Y.

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

Zheng, L.

Zhuang, W.

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, Opt. Lett. 36, 4611 (2011).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Acta Electron. Sin.

J. Wang, J. Tang, M. Duan, and J. Li, Acta Electron. Sin. 28, 38 (2000).

Acta Opt. Sin.

S. Yu and J. Tang, Acta Opt. Sin. 21, 861 (2001).

Appl. Opt.

Appl. Phys. B

A. Popescu and T. Walther, Appl. Phys. B 98, 667 (2010).
[CrossRef]

Appl. Phys. Lett.

K. J. Koski and J. L. Yarger, Appl. Phys. Lett. 87, 061903 (2005).
[CrossRef]

Chin. J. Electron.

Y. Li, L. Zhang, J. Tang, and Q. Wang, Chin. J. Electron. 2, 38 (1995).

Chin. J. Lasers

F. Li, Y. Wang, X. Cheng, and S. Gong, Chin. J. Lasers. 32, 1317 (2005).

Chin. Sci. Bull.

H. Guo, A. Dang, Y. Han, S. Gao, Y. Cao, and B. Luo, Chin. Sci. Bull. 55, 527 (2010).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Wanninger, E. C. Valdez, and T. M. Shay, IEEE Photon. Technol. Lett. 4, 94 (1992).
[CrossRef]

J. Opt. Soc. Am. B.

S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, J. Opt. Soc. Am. B. 26, 659 (2009).

J. Phys. B

G. Roberts, P. Baird, M. Brimicombe, P. Sandars, D. Selby, and D. Stacey, J. Phys. B 13, 1389 (1980).
[CrossRef]

X. Chen, V. Telegdi, and A. Weis, J. Phys. B 20, 5653 (1987).
[CrossRef]

Laser Optoelectron. Prog.

S. Gong, X. Cheng, F. Li, G. Yang, Y. Yang, and J. Wang, Laser Optoelectron. Prog. 47, 042301 (2010).

Laser Phys.

A. Popescu and T. Walther, Laser Phys. 15, 55 (2005).

Nat. Photon.

G. Scarcelli and S. H. Yun, Nat. Photon. 2, 39 (2008).
[CrossRef]

Opt. Commun.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, Opt. Commun. 264, 475 (2006).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and D. Fan, Opt. Commun. 284, 4180 (2011).
[CrossRef]

Opt. Lett.

Opt. Optoelectron. Technol.

X. Cheng, F. Li, Z. Lin, Y. Dai, and S. Gong, Opt. Optoelectron. Technol. 1, 41 (2003).

Rev. Sci. Instrum.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, Rev. Sci. Instrum. 82, 086106 (2011).
[CrossRef]

Other

B. Yin, L. S. Alvarez, and T. M. Shay, in TDA Progress Report (NASA, 1994), Vol. 42, Issue 116, pp. 71–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Setup of the experiment. The laser wavelength is 780 nm. Rb cell1 is filled with buffer gas (argon, 2 Torr) and Rb cell2 is a pure Rb cell. BS, beam splitter; G1 and G2, Glan–Taylor prisms; M1 and M2, two pieces of magnet; D1 and D2, detectors.

Fig. 2.
Fig. 2.

Transmission spectrum of the FADOF at different frequencies and with different intensities of magnetic field, using an Rb cell filled with buffer gas (argon, 2 Torr), at room temperature. The zero point of the x axis indicates the frequency of 384,231 GHz.

Fig. 3.
Fig. 3.

Transmission spectrum of the FADOF at different frequencies and with different intensities of magnetic field, using a pure Rb cell, at room temperature. The zero point of the x axis indicates the frequency of 384,231 GHz.

Fig. 4.
Fig. 4.

Transmission spectra of the FADOF at 300 Gauss at room temperature. The solid green curve represents an Rb cell filled with buffer gas (argon, 2 Torr). The red dashed curve represents a pure Rb cell. The dotted blue curve is the absorption spectrum. The zero point of the x axis locates at the left peak of the absorption spectrum, indicating the frequency of 384,228 GHz.

Fig. 5.
Fig. 5.

(a) Transmission of the FADOF at different temperatures with a magnetic field intensity of 300 Gauss. (b) Linewidths and ENBWs of the FADOF at different temperatures.

Fig. 6.
Fig. 6.

Transmission spectrum of the FADOF at 49°C and 63°C at 300 Gauss. The solid green curve stands for the transmission at 63°C. The dashed red curve stands for the transmission at 49°C.

Metrics