Abstract

We demonstrate the use of electrically contacted vapor cells to switch the transmission of a probe laser. The excitation scheme makes use of electromagnetically induced transparency involving a Rydberg state. The cell fabrication technique involves thin-film-based electric feedthroughs, which are well suited for scaling this concept to many addressable pixels like in flat panel displays.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Opt. Express 13, 1249 (2005).
    [CrossRef]
  2. W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
    [CrossRef]
  3. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
    [CrossRef]
  4. A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
    [CrossRef]
  5. R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
    [CrossRef]
  6. A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
    [CrossRef]
  7. H. Schmidt and A. Hawkins, Laser Photon. Rev. 4, 720 (2010).
    [CrossRef]
  8. T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
    [CrossRef]
  9. H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
    [CrossRef]

2010 (4)

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

H. Schmidt and A. Hawkins, Laser Photon. Rev. 4, 720 (2010).
[CrossRef]

T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
[CrossRef]

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

2009 (1)

R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
[CrossRef]

2008 (1)

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

2007 (1)

A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

2005 (1)

2003 (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Adams, C.

A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Adams, C. S.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Balabas, M. V.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Baluktsian, T.

T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
[CrossRef]

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

Bason, M. G.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Bublat, T.

Butscher, B.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Giessen, H.

Hawkins, A.

H. Schmidt and A. Hawkins, Laser Photon. Rev. 4, 720 (2010).
[CrossRef]

Hollberg, L.

Jackson, T.

A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Jensen, K.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Kitching, J.

Knappe, S.

Krauter, H.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Kübler, H.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Liew, L.

Löw, R.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
[CrossRef]

R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
[CrossRef]

Mohapatra, A.

A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Mohapatra, A. K.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Moreland, J.

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Pfau, T.

T. Baluktsian, C. Urban, T. Bublat, H. Giessen, R. Löw, and T. Pfau, Opt. Lett. 35, 1950 (2010).
[CrossRef]

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
[CrossRef]

Polzik, E. S.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Renema, J. J.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Schmidt, H.

H. Schmidt and A. Hawkins, Laser Photon. Rev. 4, 720 (2010).
[CrossRef]

Schwindt, P.

Shaffer, J. P.

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

Shah, V.

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Tino, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Urban, C.

Wasilewski, W.

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

Weatherill, K. J.

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. Tino, Eur. Phys. J. D 22, 279 (2003).
[CrossRef]

Laser Photon. Rev. (1)

H. Schmidt and A. Hawkins, Laser Photon. Rev. 4, 720 (2010).
[CrossRef]

Nat. Photon. (2)

R. Löw and T. Pfau, Nat. Photon. 3, 197 (2009).
[CrossRef]

H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw, and T. Pfau, Nat. Photon. 4, 112 (2010).
[CrossRef]

Nat. Phys. (1)

A. K. Mohapatra, M. G. Bason, B. Butscher, K. J. Weatherill, and C. S. Adams, Nat. Phys. 4, 890 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. V. Balabas, and E. S. Polzik, Phys. Rev. Lett. 104, 133601 (2010).
[CrossRef]

A. Mohapatra, T. Jackson, and C. Adams, Phys. Rev. Lett. 98, 113003 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Scheme: A glass frame provides a volume that is closed by gluing two glass plates with thin-film conductive elements onto it. The rubidium reservoir is attached to the frame. (b) Electrically contacted vapor cell with Ni electrodes. The electrodes have been structured into four field plates with an area of 10 mm × 12.5 mm each to represent two independent pixels. Each of the electrodes is contacted to the outside. The tube on the left side is filled with rubidium and serves as a reservoir.

Fig. 2.
Fig. 2.

Frequency dependence of the electric field inside the cell by measuring the Stark shift in the ITO and the Ni-coated cell. Because of the dielectric protection coating of the ITO, ions inside the ITO cell shield the applied electric field for frequencies below 40 kHz. In the Ni-coated cell the inner surface is conductive; thus the ions can be drained away.

Fig. 3.
Fig. 3.

The measured AC Stark shift at a frequency of 1 MHz in a cell coated with ITO / SiO x and in a cell coated with aluminum is almost the same. Inset: EIT signal at 0 V pp / cm (black) and at 16 V pp / cm (red) at a frequency of 500 kHz in the Ni-coated cell. The signal can be shifted by more than one linewidth, which is necessary to switch cells between ON (transmission) and OFF (no transmission).

Fig. 4.
Fig. 4.

EIT signals (black) and fitted Stark shift (red curve) in the Ni-coated cell. For voltages above 12 V / cm we observe a broad distribution and a splitting of the EIT line due to ions produced in the cell.

Metrics