Abstract

Until now, ultrafast IR spectroscopy has been limited by the bandwidth of optical parametric amplifiers, typically 100400cm1. Here we present the first example of transient IR spectroscopy using a continuum laser source to probe the entire mid-IR region with ultrafast time resolution. The continuum source is based on focusing the fundamental, second harmonic, and third harmonic of 1 mJ, 25 fs, 800 nm pulses in air, generating 150fs continuum mid-IR pulses that span the frequency range of <400 to >5000cm-1 or, conversely, <2 to >25μm. We characterize the spectral and temporal properties of dicarbonylacetonato rhodium(I) in hexane. We further demonstrate the versatility of the method by measuring the very fast and broad (>1500cm-1) spectral changes following IR excitation associated with the 7-azaindole–acetic acid heterodimer in carbon tetrachloride.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, J. Opt. Soc. Am. B 17, 2086 (2000).
    [CrossRef]
  2. C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
    [CrossRef]
  3. P. B. Petersen and A. Tokmakoff, Opt. Lett. 35, 1962 (2010).
    [CrossRef]
  4. M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, Opt. Lett. 37, 1787 (2012).
  5. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).
    [CrossRef]
  6. M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
    [CrossRef]
  7. J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
    [CrossRef]
  8. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
    [CrossRef]
  9. H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
    [CrossRef]
  10. T. Fuji and T. Suzuki, Opt. Lett. 32, 3330 (2007).
    [CrossRef]
  11. H. Enqvist, in Lund Reports on Atomic Physics, Vol. LRAP-330 (Lund University, 2004).
  12. J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
    [CrossRef]
  13. M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
    [CrossRef]
  14. P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
    [CrossRef]

2012 (1)

2010 (1)

2009 (2)

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef]

H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef]

2008 (2)

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

2007 (1)

2004 (3)

M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
[CrossRef]

M. Kress, T. Loffler, S. Eden, M. Thomson, and H. G. Roskos, Opt. Lett. 29, 1120 (2004).
[CrossRef]

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

2000 (2)

1992 (1)

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Beckerle, J. D.

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Casassa, M. P.

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Cavanagh, R. R.

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Cheng, M.

Cook, D. J.

Dai, J.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef]

Demirdöven, N.

M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
[CrossRef]

Eden, S.

Enqvist, H.

H. Enqvist, in Lund Reports on Atomic Physics, Vol. LRAP-330 (Lund University, 2004).

Fecko, C. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

Fuji, T.

Glownia, J. H.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Hamm, P.

Heilweil, E. J.

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Hochstrasser, R. M.

Kaindl, R. A.

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef]

Khalil, M.

M. Cheng, A. Reynolds, H. Widgren, and M. Khalil, Opt. Lett. 37, 1787 (2012).

M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
[CrossRef]

Kim, K. Y.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Kress, M.

Lindenberg, A. M.

H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef]

Loffler, T.

Loparo, J. J.

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

Nocera, D. G.

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

Petersen, P. B.

P. B. Petersen and A. Tokmakoff, Opt. Lett. 35, 1962 (2010).
[CrossRef]

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

Ramasesha, K.

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

Reimann, K.

Reynolds, A.

Roberts, S. T.

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

Rodriguez, G.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Roskos, H. G.

Stephenson, J. C.

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

Suzuki, T.

Taylor, A. J.

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Thomson, M.

Tokmakoff, A.

P. B. Petersen and A. Tokmakoff, Opt. Lett. 35, 1962 (2010).
[CrossRef]

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
[CrossRef]

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

Weiner, A. M.

Wen, H.

H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef]

Widgren, H.

Woerner, M.

Wurm, M.

Zhang, X.-C.

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef]

Chem. Phys. (1)

J. D. Beckerle, M. P. Casassa, R. R. Cavanagh, E. J. Heilweil, and J. C. Stephenson, Chem. Phys. 160, 487 (1992).
[CrossRef]

J. Chem. Phys. (1)

M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B. (1)

P. B. Petersen, S. T. Roberts, K. Ramasesha, D. G. Nocera, and A. Tokmakoff, J. Phys. Chem. B. 112, 13167 (2008).
[CrossRef]

Nat. Photon. (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).
[CrossRef]

Opt. Commun. (1)

C. J. Fecko, J. J. Loparo, and A. Tokmakoff, Opt. Commun. 241, 521 (2004).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).
[CrossRef]

Other (1)

H. Enqvist, in Lund Reports on Atomic Physics, Vol. LRAP-330 (Lund University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. Inset, continuum generation in detail. DP, delay plate; WP, wave plate; L1, pump lens; L2, ZnSe lens (AR coated 3–12 μm); other abbreviations are defined in the text.

Fig. 2.
Fig. 2.

Spectrum of continuum mid-IR pulses measured with a monochromator with three different gratings blazed at 2, 4, and 8 μm, and a commercial FTIR spectrometer without purge gas.

Fig. 3.
Fig. 3.

Temporal characterization of the continuum IR. (a) XFROG with 35 fs 700 nm pulses in MgO:LiNbO3, (b) cross-correlation traces from 1000 to 4000cm1 with 35nm 1830 nm pulses in germanium, (c) the FWHM, and (d) center position of each wavelength component as extracted from the XFROG (black line) and cross-correlation in germanium (gray squares).

Fig. 4.
Fig. 4.

Pump-probe data. (a) FTIR (gray) and parallel pump-probe (black) spectra of RDC in hexane, (b) isotropic and anisotropic vibrational relaxation with biexponential and single exponential fits (black), respectively, (c) FTIR (gray) and parallel pump-probe (black) spectra of 7AI-Ac in CCl4 (the pump spectrum (dotted) is shown for reference), (d) and parallel pump-probe time traces at 1900, 2500, and 3250cm1.

Metrics