Abstract

We demonstrate shift-multiplexed holographic storage of 180 digital data pages with low symbol-error rates in a thick (250 μm) SiO2 nanoparticle–polymer composite film using step-growth thiol–ene photopolymerization. A two-dimensional 24 modulation code was employed for formatting digital data pages in order to reduce the average intensity of code block without decreasing the coding efficiency. This study clearly shows the feasibility of the thiol–ene based nanoparticle–polymer composite system as a holographic data storage medium.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).
  2. N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
    [CrossRef]
  3. Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology, Vol. 15, H. S. Nalwa, ed., (American Scientific Publishers, 2011), p. 191, and references therein.
  4. Y. Tomita, T. Nakamura, and A. Tago, Opt. Lett. 33, 1750 (2008).
    [CrossRef]
  5. E. Hata and Y. Tomita, Opt. Lett. 35, 396 (2010).
    [CrossRef]
  6. E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Opt. Mater. Express 1, 207 (2011).
    [CrossRef]
  7. E. Hata and Y. Tomita, Opt. Mater. Express 1, 1113 (2011).
    [CrossRef]
  8. G. Barbastathis, M. Levene, and D. Psaltis, Appl. Opt. 35, 2403 (1996).
    [CrossRef]
  9. E. Femández, M. Ortuño, S. Gallego, A. Márquez, C. Garcia, A. Beléndez, and I. Pascual, Appl. Opt. 47, 4448 (2008).
    [CrossRef]
  10. T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
    [CrossRef]
  11. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, Opt. Lett. 23, 1710 (1998).
    [CrossRef]
  12. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, Opt. Lett. 22, 1509 (1997).
    [CrossRef]
  13. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, Opt. Express 15, 16196 (2007).
    [CrossRef]

2011

2010

2008

2007

2002

N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
[CrossRef]

2001

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

1998

1997

1996

Ayres, M. R.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Barbastathis, G.

Beléndez, A.

Bernal, M.-P.

Boyd, C.

Burr, G. W.

Campbell, S.

Coufal, H.

Curtis, K.

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, Opt. Lett. 23, 1710 (1998).
[CrossRef]

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Dhar, L.

L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, Opt. Lett. 23, 1710 (1998).
[CrossRef]

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Femández, E.

Fukumoto, A.

Gallego, S.

Garcia, C.

Grygier, R. K.

Günther, H.

Hara, M.

Harris, A.

Hata, E.

Hill, A.

Hill, A. J.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Hirooka, K.

Hoffnagle, J. A.

Imai, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

Ishioka, K.

Jefferson, C. M.

Kojima, T.

N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
[CrossRef]

Kume, T.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

Levene, M.

Levinos, N.

Macfarlane, R. M.

Márquez, A.

Mitsube, K.

Momose, K.

Nakamura, T.

Ortuño, M.

Pascual, I.

Psaltis, D.

Schilling, M.

Shelby, R. M.

Sincerbox, G. T.

Suzuki, N.

N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
[CrossRef]

Tackitt, M.

Tago, A.

Tanaka, K.

Tokuyama, K.

Tomita, Y.

E. Hata, K. Mitsube, K. Momose, and Y. Tomita, Opt. Mater. Express 1, 207 (2011).
[CrossRef]

E. Hata and Y. Tomita, Opt. Mater. Express 1, 1113 (2011).
[CrossRef]

E. Hata and Y. Tomita, Opt. Lett. 35, 396 (2010).
[CrossRef]

Y. Tomita, T. Nakamura, and A. Tago, Opt. Lett. 33, 1750 (2008).
[CrossRef]

N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
[CrossRef]

Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology, Vol. 15, H. S. Nalwa, ed., (American Scientific Publishers, 2011), p. 191, and references therein.

Watanabe, K.

Wilson, W.

Wilson, W. L.

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Yagi, S.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

Yamamoto, M.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Suzuki, Y. Tomita, and T. Kojima, Appl. Phys. Lett. 81, 4121 (2002).
[CrossRef]

Jpn. J. Appl. Phys.

T. Kume, S. Yagi, T. Imai, and M. Yamamoto, Jpn. J. Appl. Phys. 40, 1732 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater. Express

Other

K. Curtis, L. Dhar, A. J. Hill, W. L. Wilson, and M. R. Ayres, Holographic Data Storage (Wiley, 2010).

Y. Tomita, “Holographic nanoparticle-photopolymer composites,” in Encyclopedia of Nanoscience and Nanotechnology, Vol. 15, H. S. Nalwa, ed., (American Scientific Publishers, 2011), p. 191, and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Shift-multiplexed holographic data storage system: BE, beam expander; M1–M3, mirrors; HM, half-mirror; L1–L6, lenses; P1–P4, polarizers; W, half-wave plate; D, diaphragm; SLM, spatial light modulator; CCD, charge-coupled device. Focal lengths of L1–L6 are 50, 50, 50, 100, 100, and 100 mm, respectively.

Fig. 2.
Fig. 2.

(a) Input digital data page with the 24 modulation code, (b) straight-through image with a uniformly cured 250 μm film sample.

Fig. 3.
Fig. 3.

Shift-multiplexing scheme: (a) shifting phase, (b) recording phase after many shifts, and (c) time chart for shifting and recording.

Fig. 4.
Fig. 4.

Diffraction efficiencies of reconstructed holograms as a function of data page number.

Fig. 5.
Fig. 5.

Reconstructed digital data page images of (a) the 19th and (b) the 179th holograms in recording order.

Fig. 6.
Fig. 6.

SERs and SNRs of reconstructed holograms as a function of data page number.

Metrics