Abstract

We propose and demonstrate a novel scheme of ultra-wideband (UWB) doublet pulse generation using a semiconductor optical amplifier (SOA) based polarization-diversified loop (PDL) without any assistant light. In our scheme, the incoming Gaussian pulse is split into two parts by the PDL, and each of them is intensity modulated by the other due to cross-gain modulation (XGM) in the SOA. Then, both parts are recombined with incoherent summation to form a UWB doublet pulse. Bi-polar UWB doublet pulse generation is demonstrated using an inverted Gaussian pulse injection. Moreover, pulse amplitude modulation of UWB doublet is also experimentally demonstrated. Our scheme shows some advantages, such as simple implementation without assistant light and single optical carrier operation with good fiber dispersion tolerance.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
    [CrossRef]
  3. J. Yao, F. Zeng, and Q. Wang, J. Lightwave Technol. 25, 3219 (2007).
    [CrossRef]
  4. J. F. M. Gerrits and J. R. Farserotu, Electron. Lett. 38, 1737 (2002).
    [CrossRef]
  5. Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
    [CrossRef]
  6. J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 1223 (2007).
    [CrossRef]
  7. T. Huang, J. Li, J. Sun, and L. R. Chen, Opt. Express 19, 15885 (2011).
    [CrossRef]
  8. H. Huang, K. Xu, J. Li, J. Wu, X. Hong, and J. Lin, J. Lightwave Technol. 26, 2635 (2008).
    [CrossRef]
  9. H. Chen, M. Chen, T. Wang, M. Li, and S. Xie, J. Lightwave Technol. 26, 2492 (2008).
    [CrossRef]
  10. R. Gu, S. Pan, X. Chen, M. Pan, and D. Ben, Opt. Express 19, 13686 (2011).
    [CrossRef]
  11. Q. Wang, F. Zeng, S. Blais, and J. Yao, Opt. Lett. 31, 3083 (2006).
    [CrossRef]
  12. Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
    [CrossRef]

2012 (1)

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

2011 (2)

2008 (2)

2007 (2)

2006 (1)

2005 (1)

Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
[CrossRef]

2003 (2)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

2002 (1)

J. F. M. Gerrits and J. R. Farserotu, Electron. Lett. 38, 1737 (2002).
[CrossRef]

Aiello, G. R.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Ben, D.

Blais, S.

Chen, H.

Chen, L. R.

Chen, M.

Chen, X.

Dong, J.

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef]

Farserotu, J. R.

J. F. M. Gerrits and J. R. Farserotu, Electron. Lett. 38, 1737 (2002).
[CrossRef]

Gerrits, J. F. M.

J. F. M. Gerrits and J. R. Farserotu, Electron. Lett. 38, 1737 (2002).
[CrossRef]

Gu, R.

Hirt, W.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Hong, X.

Huang, D.

Huang, H.

Huang, T.

Lei, Z.

Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
[CrossRef]

Li, J.

Li, M.

Li, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

Lin, J.

Menzel, W.

Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
[CrossRef]

Pan, M.

Pan, S.

Porcine, D.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Research, P.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

Sheng, S.

Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
[CrossRef]

Sun, J.

Wang, Q.

Wang, T.

Wu, J.

Xie, S.

Xu, J.

Xu, K.

Yao, J.

Yu, Y.

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

Zeng, F.

Zhang, X.

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 1223 (2007).
[CrossRef]

Electron. Lett. (1)

J. F. M. Gerrits and J. R. Farserotu, Electron. Lett. 38, 1737 (2002).
[CrossRef]

IEEE Commun. Mag. (1)

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

Z. Lei, S. Sheng, and W. Menzel, IEEE Microw. Wireless Compon. Lett. 15, 796 (2005).
[CrossRef]

IEEE Photon. J. (1)

Y. Yu, J. Dong, X. Li, and X. Zhang, IEEE Photon. J. 4, 327 (2012).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (2)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scheme of photonic UWB doublet pulse generation.

Fig. 2.
Fig. 2.

(a), (c) and (e) Input Gaussian pulse, gain variations of CW light and CCW light, and output positive doublet waveform, respectively. (b), (d) and (f) Input inverted Gaussian pulse, gain variations of CW light and CCW light, and output negative doublet waveform, respectively.

Fig. 3.
Fig. 3.

(a) Input RZ pulse with finite extinction ratio.(b) Output waveform when the time delay is 180 ps.

Fig. 4.
Fig. 4.

(a) and (b) Measured positive doublet pulse and its electrical spectrum, respectively. (c) and (d) Measured negative doublet pulse and its electrical spectrum, respectively.

Fig. 5.
Fig. 5.

(a) and (c) Amplitude modulation sequences of positive doublet pulses and negative doublet pulses at 2.5Gb/s, respectively. (b) and (d) Corresponding electrical spectra, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Pin(t)=s(t)+τ,
PCW(t)=PCCW(t)=0.5Pin(t).
PCW(t)=PCW(t)GCW(t),
PCCW(t)=PCCW(t)GCCW(t),
Pout(t)=12Pin(t)[GCW(t)+GCCW(t)].

Metrics