Abstract

Optically pumped alkali vapor lasers are currently being developed in several laboratories. The objective is to construct high-powered lasers that also exhibit excellent beam quality. Considerable progress has been made, but there are technical challenges associated with the reactivity of the metal atoms. Rare gas atoms (Rg) excited to the np5(n+1)s P23 configuration are metastable and have spectral properties that are closely similar to those of the alkali metals. In principle, optically pumped lasers could be constructed using excitation of the np5(n+1)pnp5(n+1)s transitions. We have demonstrated this potential by observing gain and lasing for optically pumped Ar*, Kr* and Xe*. Three-level lasing schemes were used, with He or Ar as the collisional energy transfer agent that established the population inversion. These laser systems have the advantage of using inert reagents that are gases at room temperature.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, J. Opt. Soc. Am. B 21, 2151 (2004).
    [CrossRef]
  2. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
    [CrossRef]
  3. N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, J. Opt. Soc. Am. B 28, 1088 (2011).
    [CrossRef]
  4. B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).
  5. W. Happer, Rev. Mod. Phys. 44, 169 (1972).
    [CrossRef]
  6. A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
    [CrossRef]
  7. D. H. Stedman and D. W. Setser, Prog. React. Kinet. 6, 193 (1971).
  8. NIST, “NIST Atomic Spectra Database,” http://www.nist.gov/pml/data/asd.cfm (2012).
  9. M. H. Kabir and M. C. Heaven, Proc. SPIE 8238, 823807 (2012).

2012

M. H. Kabir and M. C. Heaven, Proc. SPIE 8238, 823807 (2012).

2011

2010

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).

2004

1975

A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
[CrossRef]

1972

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

1971

D. H. Stedman and D. W. Setser, Prog. React. Kinet. 6, 193 (1971).

Beach, R. J.

Dubinskii, M. A.

Hager, G. D.

Happer, W.

A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
[CrossRef]

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

Heaven, M. C.

M. H. Kabir and M. C. Heaven, Proc. SPIE 8238, 823807 (2012).

Hostutler, D. A.

N. D. Zameroski, G. D. Hager, W. Rudolph, and D. A. Hostutler, J. Opt. Soc. Am. B 28, 1088 (2011).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

Kabir, M. H.

M. H. Kabir and M. C. Heaven, Proc. SPIE 8238, 823807 (2012).

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).

Krupke, W. F.

Merkle, L. D.

Moe, G.

A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
[CrossRef]

Payne, S. A.

Perram, G. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

Rudolph, W.

Setser, D. W.

D. H. Stedman and D. W. Setser, Prog. React. Kinet. 6, 193 (1971).

Shaffer, M. K.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).

Stedman, D. H.

D. H. Stedman and D. W. Setser, Prog. React. Kinet. 6, 193 (1971).

Sulham, C. V.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

Tam, A.

A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
[CrossRef]

Wilkinson, M. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

Zameroski, N. D.

Zhdanov, B. V.

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).

J. Opt. Soc. Am. B

Opt. Commun.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, Opt. Commun. 283, 4328 (2010).
[CrossRef]

Phys. Rev. Lett.

A. Tam, G. Moe, and W. Happer, Phys. Rev. Lett. 35, 1630 (1975).
[CrossRef]

Proc. SPIE

B. V. Zhdanov, M. K. Shaffer, and R. J. Knize, Proc. SPIE 7721, 77211V (2010).

M. H. Kabir and M. C. Heaven, Proc. SPIE 8238, 823807 (2012).

Prog. React. Kinet.

D. H. Stedman and D. W. Setser, Prog. React. Kinet. 6, 193 (1971).

Rev. Mod. Phys.

W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[CrossRef]

Other

NIST, “NIST Atomic Spectra Database,” http://www.nist.gov/pml/data/asd.cfm (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Energy level scheme for an optically pumped Rg* laser.

Fig. 2.
Fig. 2.

Apparatus used to study gain and lasing of optically pumped Rg* atoms.

Fig. 3.
Fig. 3.

Demonstration of gain on the 5p[1/2]15s[3/2]2 transition of Kr following optical pumping of the 5p[5/2]35s[3/2]2 line. The pump and probe lasers were fired 7 μs after the discharge pulse.

Fig. 4.
Fig. 4.

Dependence of the Kr* 5p[1/2]15s[3/2]2 gain on He pressure. These time-resolved traces were recorded for 27 mbar of Kr in He, with optical pumping of the 5p[5/2]35s[3/2]2 transition. Going from the lowest to the highest trace, the total pressures for these measurements were 200, 400, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, and 2000 mbar. The delay between the discharge and laser pulses was optimized for each pressure, within the range 5–25 μs.

Metrics